Cell and Tissue Research

, Volume 318, Issue 2, pp 439–457 | Cite as

Mas-allatotropin/Lom-AG-myotropin I immunostaining in the brain of the locust, Schistocerca gregaria

  • Uwe Homberg
  • Christian Brandl
  • Elke Clynen
  • Liliane Schoofs
  • Jan A. Veenstra
Regular Article

Abstract

Mas-allatotropin (Mas-AT) and Lom-accessory gland-myotropin I (Lom-AG-MTI) are two members of a conserved family of insect neuropeptides, collectively termed allatotropins, which have diverse functions, ranging from stimulation of juvenile hormone secretion to myotropic effects on heart and hindgut. In addition, allatotropins appear to be abundant within the nervous system, suggesting neuroactive roles. To identify neurons in the insect brain suitable for a neurophysiological analysis of the roles of allatotropins, we used antisera against Mas-AT and Lom-AG-MTI to map allatotropin-immunoreactive neurons in the brain of a suitable insect, the locust Schistocerca gregaria. Both antisera revealed basically identical staining patterns throughout the locust brain with more than 12,500 immunostained interneurons per brain hemisphere. Neurosecretory cells were not labeled, and the retrocerebral complex was devoid of immunostaining. Prominent immunoreactive cell types include about 9,600 lamina monopolar neurons, medulla to lobula interneurons, local neurons of the antennal lobe, a giant interneuron of the mushroom body, projection neurons of the glomerular lobe to the mushroom body, and three systems of tangential neurons of the central complex. Several groups of neurons showed colocalization of Mas-AT- and γ-aminobutyric acid immunostaining. Mass spectrometric analysis identified a peptide with a molecular mass identical to Lom-AG-MTI in all major parts of the locust brain but not in the retrocerebral complex. This study strongly suggests that Lom-AG-MTI is highly abundant in the locust brain, and is likely to play a neuroactive role in many brain circuits including all stages of sensory processing, learning and memory, and higher levels of motor control.

Keywords

Insect brain Neuropeptide Mushroom body Optic lobe γ-Aminobutyric acid Schistocerca gregaria (Insecta) 

Notes

Acknowledgements

We are grateful to Dr. Timothy Kingan for the donation of anti-GABA antiserum. We thank Dr. Lez Williams for advice regarding nomenclature and are grateful to Ulrike Binkle and Jutta Seyfarth for expert technical assistance. E. Clynen is a post-doc of the FWO Flanders.

References

  1. Abercrombie M (1946) Estimation of nuclear population from microtome sections. Anat Rec 94:239–247Google Scholar
  2. Anton S, Hansson B (1996) Antennal lobe interneurons in the desert locust Schistocerca gregaria (Forskal): processing of aggregation pheromones in adult males and females. J Comp Neurol 370:85–96CrossRefPubMedGoogle Scholar
  3. Anton S, Homberg U (1999) Antennal lobe structure. In: Hansson BS (ed) Insect olfaction. Springer, Berlin Heidelberg New York, pp 97–124Google Scholar
  4. Bernard F (1937) Recherches sur la morphogénèse des yeux composés d’arthropodes. Bull Biol Fr Belg Suppl 23:1–162Google Scholar
  5. Blaney WM (1974) Electrophysiological responses of the terminal sensilla on the maxillary palps of Locusta migratoria (L.) to some electrolytes and non-electrolytes. J Exp Biol 60:275–293PubMedGoogle Scholar
  6. Bogus MI, Scheller K (1994) Identification of allatotropin-secreting cells in the brain of an insect larva. Naturwissenschaften 81:87–89CrossRefGoogle Scholar
  7. Duve H, Thorpe A (2003) Neuropeptide co-localization in the lepidopteran frontal ganglion studied by confocal laser scanning microscopy. Cell Tissue Res 311:79–89CrossRefPubMedGoogle Scholar
  8. Duve H, East PD, Thorpe A (1999) Regulation of lepidopteran foregut movement by allatostatins and allatotropin from the frontal ganglion. J Comp Neurol 413:405–416CrossRefPubMedGoogle Scholar
  9. Duve H, Audsley N, Weaver RJ, Thorpe A (2000) Triple co-localization of two types of allatostatin and an allatotropin in the frontal ganglion of the lepidopteran Lacanobia oleracea (Noctuidae): innervation and action on the foregut. Cell Tissue Res 300:153–163PubMedGoogle Scholar
  10. Ehmer B, Gronenberg W (2002) Segregation of visual input to the mushroom bodies in the honeybee (Apis mellifera). J Comp Neurol 451:362–373CrossRefPubMedGoogle Scholar
  11. Elekonich MM, Horodyski FM (2003) Insect allatotropins belong to a family of structurally-related myoactive peptides present in several invertebrate phyla. Peptides 24:1623–1632CrossRefPubMedGoogle Scholar
  12. Elphick MR, Williams L, O’Shea M (1996) New features of the locust optic lobe: evidence of a role for nitric oxide in insect vision. J Exp Biol 199:2395–2407PubMedGoogle Scholar
  13. Ernst KD, Boeckh J, Boeckh V (1977) A neuroanatomical study on the organization of the central antennal pathways in insects. Cell Tissue Res 176:285–308PubMedGoogle Scholar
  14. Frambach I, Schürmann F-W (2004) Separate distribution of deutocerebral projection neurones in the mushroom bodies of the cricket brain. Acta Biol Hung 55:21–29Google Scholar
  15. Gronenberg W (2001) Subdivisions of hymenopteran mushroom body calyces by their afferent supply. J Comp Neurol 463:474–489CrossRefGoogle Scholar
  16. Hanström B (1928) Vergleichende Anatomie des Nervensystems der wirbellosen Tiere unter Berücksichtigung seiner Funktion. Springer, Berlin Heidelberg New YorkGoogle Scholar
  17. Helfrich-Förster C, Stengl M, Homberg U (1998) Organization of the circadian system in insects. Chronobiol Int 15:567–594PubMedGoogle Scholar
  18. Hoffmann KH, Meyering-Vos M, Lorenz MW (1999). Allatostatins and allatotropins: is the regulation of corpora allata activity their primary function? Eur J Entomol 96:256–266Google Scholar
  19. Homberg U (1994) Distribution of neurotransmitters in the insect brain. Progress in zoology, vol 40. Fischer, StuttgartGoogle Scholar
  20. Homberg U (2002) Neurotransmitters and neuropeptides in the brain of the locust. Microsc Res Tech 56:189–209CrossRefPubMedGoogle Scholar
  21. Homberg U, Paech A (2002) Ultrastructure and orientation of ommatidia in the dorsal rim area of the locust compound eye. Arthropod Struct Dev 30:271–280CrossRefGoogle Scholar
  22. Homberg U, Montague RA, Hildebrand JG (1988) Anatomy of antenno-cerebral pathways in the brain of the sphinx moth Manduca sexta. Cell Tissue Res 254:255–281PubMedGoogle Scholar
  23. Homberg U, Kingan TG, Hildebrand JG (1990) Distribution of FMRFamide-like immunoreactivity in the brain and suboesophageal ganglion of the sphinx moth Manduca sexta and colocalization with SCPB-, BPP-, and GABA-like immunoreactivity. Cell Tissue Res 259:401–419PubMedGoogle Scholar
  24. Homberg U, Vitzthum H, Müller M, Binkle U (1999) Immunocytochemistry of GABA in the central complex of the locust Schistocerca gregaria: identification of immunoreactive neurons and colocalization with neuropeptides. J Comp Neurol 409:495–507CrossRefPubMedGoogle Scholar
  25. Homberg U, Reischig T, Stengl M (2003) Neural organization of the circadian system of the cockroach Leucophaea maderae. Chronobiol Int 20:577–591CrossRefPubMedGoogle Scholar
  26. Horodyski FM, Bhatt SR, Lee K-Y (2001) Alternative splicing of transcripts expressed by the Manduca sexta allatotropin (Mas-AT) gene is regulated in a tissue-specific manner. Peptides 22:263–269CrossRefPubMedGoogle Scholar
  27. Ignell R (2001) Monoamines and neuropeptides in antennal lobe interneurons of the desert locust, Schistocerca gregaria: an immunocytochemical study. Cell Tissue Res 306:143–156CrossRefPubMedGoogle Scholar
  28. Ignell R, Anton S, Hansson BS (1998) Central nervous processing of behaviourally relevant odours in solitary and gregarious fifth instar locusts, Schistocerca gregaria. J Comp Physiol A 183:453–465CrossRefGoogle Scholar
  29. Ignell R, Anton S, Hansson BS (1999) Integration of behaviourally relevant odours at the central nervous level in solitary and gregarious third instar locusts, Schistocerca gregaria. J Insect Physiol 45:993–1000CrossRefPubMedGoogle Scholar
  30. Ignell R, Anton S, Hansson BS (2000) The maxillary palp sensory pathway of Orthoptera. Arthropod Struct Dev 29:295–305CrossRefGoogle Scholar
  31. Ignell R, Anton S, Hansson BS (2001) The antennal lobe of Orthoptera—anatomy and evolution. Brain Behav Evol 57:1–17CrossRefPubMedGoogle Scholar
  32. Jawłowski, H (1954) Über die Struktur des Gehirnes bei Saltatoria. Ann Univ Mariae Curie-Skłodowska C8:403–434Google Scholar
  33. Kataoka H, Toschi A, Li JP, Carney RL, Schooley DA, Kramer SJ (1989) Identification of an allatotropin from adult Manduca sexta. Science 243:1481–1483Google Scholar
  34. Koladich PM, Tobe SS, McNeil JN (2002a) Enhanced haemolymph circulation by insect ventral nerve cord: hormonal control by Pseudaletia unipuncta allatotropin and serotonin. J Exp Biol 205:3123–3131PubMedGoogle Scholar
  35. Koladich PM, Cusson M, Bendena WG, Tobe SS, McNeil JN (2002b) Cardioacceleratory effects of Manduca sexta allatotropin in the true armyworm moth, Pseudaletia unipuncta. Peptides 23:645–651CrossRefPubMedGoogle Scholar
  36. Laurent G (2002) Olfactory network dynamics and the coding of multidimensional signals. Nat Rev Neurosci 3:884–895CrossRefPubMedGoogle Scholar
  37. Laurent G, Wehr M, Davidowitz H (1996) Temporal representations of odors in an olfactory network. J Neurosci 16:3837–3847PubMedGoogle Scholar
  38. Lee K-Y, Horodyski FM, Chamberlin ME (1998) Inhibition of midgut ion transport by allatotropin (Mas-AT) and Manduca FLRFamide peptides in the tobacco hornworm, Manduca sexta. J Exp Biol 201:3067–3074PubMedGoogle Scholar
  39. Lee K-Y, Chamberlin ME, Horodyski FM (2002) Biological activity of Manduca sexta allatotropin-like peptides, predicted products of tissue-specific and developmentally regulated alternatively spliced mRNAs. Peptides 23:1933–1941CrossRefPubMedGoogle Scholar
  40. Leitch B, Laurent G (1996) GABAergic synapses in the antennal lobe and mushroom body of the locust olfactory system. J Comp Neurol 372:487–514CrossRefPubMedGoogle Scholar
  41. Li Y, Unnithan GC, Veenstra JA, Feyereisen R, Noriega FG (2003) Stimulation of JH biosynthesis by the corpora allata of adult female Aedes aegypti in vitro: effect of farnesoic acid and Aedes allatotropin. J Exp Biol 206:1825–1832CrossRefPubMedGoogle Scholar
  42. MacLeod K, Laurent G (1996) Distinct mechanisms of synchronization and temporal patterning of odor-encoding neural assemblies. Science 274:976–979CrossRefPubMedGoogle Scholar
  43. Meeusen T, Mertens I, De Loof A, Schoofs L (2003) G protein-coupled receptors in invertebrates: a state of the art. Int Rev Cytol 230:189–261CrossRefPubMedGoogle Scholar
  44. Mobbs PG (1982) The brain of the honeybee Apis mellifera. I. The connections and spatial organization of the mushroom bodies. Philos Trans R Soc Lond B 298:309–354Google Scholar
  45. Nässel DR (1987) Neuroactive substances in the insect CNS. In: Ali MA (ed) Nervous system in invertebrates. Plenum, New York, pp 171–212Google Scholar
  46. Nässel DR (2000) Functional roles of neuropeptides in the insect central nervous system. Naturwissenschaften 87:439–449CrossRefPubMedGoogle Scholar
  47. Nowel MS, Shelton PMJ (1981) A Golgi-electron-microscopical study of the structure and development of the lamina ganglionaris of the locust optic lobe. Cell Tissue Res 216:377–401PubMedGoogle Scholar
  48. Nusbaum MP, Blitz DM, Swensen AM, Wood D, Marder E (2001) The roles of co-transmission in neural network modulation. Trends Neurosci 24:146–154CrossRefPubMedGoogle Scholar
  49. Oeh U, Lorenz MW, Dyker H, Lösel P, Hoffmann KP (2000) Interaction between Manduca sexta allatotropin and Manduca sexta allatostatin in the fall armyworm Spodoptera frugiperda. Insect Biochem Mol Biol 30:719–727CrossRefPubMedGoogle Scholar
  50. Paemen L, Tips A, Schoofs L, Proost P, Van Damme J, De Loof A (1991) Lom-AG-myotropin: a novel myotropic peptide from the male accessory glands of Locusta migratoria. Peptides 12:7–10CrossRefPubMedGoogle Scholar
  51. Paemen L, Schoofs L, De Loof A (1992) Localization of Lom-AG-myotropin I-like substances in the male reproductive and nervous tissue of the locust, Locusta migratoria. Cell Tissue Res 268:91–97PubMedGoogle Scholar
  52. Park C, Jeon SK, Kim M-Y, Han SS, Yu CH, Lee BH (2001) Postembryonic localization of allatotropin- and allatostatin-producing cells in central nervous system of the silk moth Bombyx mori. Zool Sci 18:367–379Google Scholar
  53. Park C, Hwang JS, Kang SW, Lee BH (2002) Molecular characterization of a cDNA from the silk moth Bombyx mori encoding Manduca sexta allatotropin peptide. Zool Sci 19:287–292PubMedGoogle Scholar
  54. Persson MGS, Nässel DR (1999) Neuropeptides in insect sensory neurons: tachykinin, FMRFamide- and allatotropin-related peptides in terminals of locust thoracic sensory afferents. Brain Res 816:131–141CrossRefPubMedGoogle Scholar
  55. Petri B, Stengl M, Würden S, Homberg U (1995) Immunocytochemical characterization of the accessory medulla in Leucophaea maderae. Cell Tissue Res 282:3–19CrossRefPubMedGoogle Scholar
  56. Petri B, Homberg U, Loesel R, Stengl M (2002) Evidence for a role of GABA and Mas-allatotropin in photic entrainment of the circadian clock of the cockroach Leucophaea maderae. J Exp Biol 205:1459–1469PubMedGoogle Scholar
  57. Rachinsky A, Feldlaufer MF (2000) Responsiveness of honey bee (Apis mellifera L.) corpora allata to allatoregulatory peptides from four insect species. J Insect Physiol 46:41–46CrossRefPubMedGoogle Scholar
  58. Rachinsky A, Srinivasan A, Ramaswamy SB (2003) Regulation of juvenile hormone biosynthesis in Heliothis virescens by Manduca sexta allatotropin. Arch Insect Biochem Physiol 54:121–133CrossRefPubMedGoogle Scholar
  59. Riehle MA, Garczynski SF, Crim JW, Hill CA, Brown MR (2002) Neuropeptides and peptide hormones in Anopheles gambiae. Science 298:172–175CrossRefPubMedGoogle Scholar
  60. Rudwall AJ, Sliwowska J, Nässel DR (2000) Allatotropin-like neuropeptide in the cockroach abdominal nervous system: myotropic actions, sexually dimorphic distribution and colocalization with serotonin. J Comp Neurol 428:159–173CrossRefPubMedGoogle Scholar
  61. Satija RC (1958) A histological and experimental study of nervous pathways in the brain and thoracic nerve cord of Locusta migratoria migratoriodes (R & F). Res Bull Panjab Univ 9:13–32Google Scholar
  62. Sattelle DB (1990) GABA receptors of insects. Adv Insect Physiol 22:1–113Google Scholar
  63. Spittaels K, Vankeerberghen A, Schoofs L, Proost P, Van Damme J, De Loof A (1996) Isolation and characterization of Locusta migratoria accessory gland myotropin I (Lom-AG-MT-I) from the brain of the Colorado potato beetle, Leptinotarsa decemlineata. Arch Insect Biochem Physiol 31:149–155CrossRefPubMedGoogle Scholar
  64. Sternberger LA (1979) Immunocytochemistry. Wiley, New YorkGoogle Scholar
  65. Stopfer M, Bhagvan S, Smith BH, Laurent G (1997) Impaired odour discrimination of odour-encoding neural assemblies. Nature 390:70–74CrossRefPubMedGoogle Scholar
  66. Strausfeld NJ, Hansen L, Li Y, Gomez RS, Ito K (1998) Evolution, discovery, and interpretations of arthropod mushroom bodies. Learn Mem 5:11–37PubMedGoogle Scholar
  67. Taylor PA III, Bhatt TR, Horodyski FM (1996) Molecular characterization and expression analysis of Manduca sexta allatotropin. Eur J Biochem 239:588–596PubMedGoogle Scholar
  68. Truesdell PF, Koladich PM, Kataoka H, Kojima K, Suzuki A, McNeil J, Mizoguchi A, Tobe SS, Bendena WG (2000) Molecular characterization of a cDNA from the true armyworm Pseudaletia unipuncta encoding Manduca sexta allatotropin peptide. Insect Biochem Mol Biol 30:691–702CrossRefPubMedGoogle Scholar
  69. Tu MT, Kou R, Wang Z-S, Stoffolano JG Jr, Yin C-M (2001) Immunolocalization and possible effect of a moth allatotropin-like substance in a fly, Phormia regina (Diptera: Calliphoridae). J Insect Physiol 47:233–244CrossRefPubMedGoogle Scholar
  70. Veelaert D, Schoofs L, De Loof A (1998) Peptidergic control of the corpus cardiacum-corpora allata complex of locusts. Int Rev Cytol 182:249–302PubMedGoogle Scholar
  71. Veenstra JA, Costes L (1999) Isolation and identification of a peptide and its cDNA from the mosquito Aedes aegypti related to Manduca sexta allatotropin. Peptides 20:1145–1151CrossRefPubMedGoogle Scholar
  72. Veenstra JA, Hagedorn HH (1993) Sensitive enzyme immunoassay for Manduca allatotropin and the existence of an allatotropin-immunoreactive peptide in Periplaneta americana. Arch Insect Biochem Physiol 23:99–109Google Scholar
  73. Veenstra JA, Lehman HK, Davis NT (1994) Allatotropin is a cardioacceleratory peptide in Manduca sexta. J Exp Biol 188:347–354PubMedGoogle Scholar
  74. Vitzthum H, Homberg U (1998) Immunocytochemical demonstration of locustatachykinin-related peptides in the central complex of the locust brain. J Comp Neurol 390:455–469CrossRefPubMedGoogle Scholar
  75. Vitzthum H, Müller M, Homberg U (2002) Neurons of the central complex of the locust Schistocerca gregaria are sensitive to polarized light. J Neurosci 22:1114–1125PubMedGoogle Scholar
  76. Wilson RI, Turner GC, Laurent G (2004) Transformation of olfactory representations in the Drosophila antennal lobe. Science 303:366–370CrossRefPubMedGoogle Scholar
  77. Würden S, Homberg U (1995) Immunocytochemical mapping of serotonin and neuropeptides in the accessory medulla of the locust, Schistocerca gregaria. J Comp Neurol 362:305–319PubMedGoogle Scholar
  78. Zars T (2000) Behavioral functions of the insect mushroom bodies. Curr Opin Neurobiol 10:790–795CrossRefPubMedGoogle Scholar
  79. Žitňan D, Sehnal F, Bryant PJ (1993) Neurons producing specific neuropeptides in the central nervous system of normal and pupariation-delayed Drosophila. Dev Biol 156:117–135Google Scholar
  80. Žitňan D, Kingan TG, Kramer SJ, Beckage NE (1995) Accumulation of neuropeptides in the cerebral neuroseretory system of Manduca sexta larvae parasitized by the braconid wasp Cotesia congregata. J Comp Neurol 356:83–100Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Uwe Homberg
    • 1
  • Christian Brandl
    • 2
  • Elke Clynen
    • 3
  • Liliane Schoofs
    • 3
  • Jan A. Veenstra
    • 4
  1. 1.Fachbereich Biologie/TierphysiologieUniversität MarburgMarburgGermany
  2. 2.Institut für ZoologieUniversität RegensburgRegensburgGermany
  3. 3.Zoological InstituteK.U. LeuvenLeuvenBelgium
  4. 4.Neuroendocrinol LabUniversity of Bordeaux 1TalenceFrance

Personalised recommendations