Cell and Tissue Research

, Volume 316, Issue 2, pp 141–153 | Cite as

Custom-shaping system for bone regeneration by seeding marrow stromal cells onto a web-like biodegradable hybrid sheet

  • Kohei Tsuchiya
  • Taisuke Mori
  • Guoping Chen
  • Takashi Ushida
  • Tetsuya Tateishi
  • Takeo Matsuno
  • Michiie Sakamoto
  • Akihiro UmezawaEmail author
Regular Article


New bone for the repair or the restoration of the function of traumatized, damaged, or lost bone is a major clinical need, and bone tissue engineering has been heralded as an alternative strategy for regenerating bone. A novel web-like structured biodegradable hybrid sheet has been developed for bone tissue engineering by preparing knitted poly(DL-lactic-co-glycolic acid) sheets (PLGA sheets) with collagen microsponges in their openings. The PLGA skeleton facilitates the formation of the hybrid sheets into desired shapes, and the collagen microsponges in the pores of the PLGA sheet promote cell adhesion and uniform cell distribution throughout the sheet. A large number of osteoblasts established from marrow stroma adhere to the scaffolds and generate the desired-shaped bone in combination with these novel sheets. These results indicate that the web-like structured novel sheet shows promise for use as a tool for custom-shaped bone regeneration in basic research on osteogenesis and for the development of therapeutic applications.


Bone regeneration Tissue engineering Scaffold Marrow stroma Polymer KUSA-A1 cells 



We sincerely thank Y. Takeda and S. Matsumoto for support throughout the work, and N. Hida, T. Inomata, Y. Hashimoto, and Y. Nakamura for providing expert technical assistance.


  1. Aronow MA, Gerstenfeld LC, Owen TA, Tassinari MS, Stein GS, Lian JB (1990) Factors that promote progressive development of the osteoblast phenotype in cultured fetal rat calvaria cells. J Cell Physiol 143:213–221PubMedGoogle Scholar
  2. Bauer TW, Muschler GF (2000) Bone graft materials. An overview of the basic science. Clin Orthop 371:10–27PubMedGoogle Scholar
  3. Bostman OM (1991) Osteolytic changes accompanying degradation of absorbable fracture fixation implants. J Bone Joint Surg Br 73:679–682PubMedGoogle Scholar
  4. Boyan BD, Lohmann CH, Romero J, Schwartz Z (1999) Bone and cartilage tissue engineering. Clin Plast Surg 26:629–645PubMedGoogle Scholar
  5. Chen G, Ushida T, Tateishi T (2000) A biodegradable hybrid sponge nested with collagen microsponges. J Biomed Mater Res 51:273–279CrossRefPubMedGoogle Scholar
  6. Chen G, Ushida T, Tateishi T (2001a) Poly(DL-lactic-co-glycolic acid) sponge hybridized with collagen microsponges and deposited apatite particulates. J Biomed Mater Res 57:8–14CrossRefPubMedGoogle Scholar
  7. Chen G, Ushida T, Tateishi T (2001b) Preparation of poly(L-lactic acid) and poly(DL-lactic-co-glycolic acid) foams by use of ice microparticulates. Biomaterials 22:2563–2567CrossRefPubMedGoogle Scholar
  8. Chen G, Sato T, Ushida T, Hirochika R, Tateishi T (2003) Redifferentiation of dedifferentiated bovine chondrocytes when cultured in vitro in a PLGA-collagen hybrid mesh. FEBS Lett 542:95–99CrossRefPubMedGoogle Scholar
  9. Chicurel ME, Chen CS, Ingber DE (1998) Cellular control lies in the balance of forces. Curr Opin Cell Biol 10:232–239CrossRefPubMedGoogle Scholar
  10. Cornell CN, Lane JM, Chapman M, Merkow R, Seligson D, Henry S, Gustilo R, Vincent K (1991) Multicenter trial of Collagraft as bone graft substitute. J Orthop Trauma 5:1–8PubMedGoogle Scholar
  11. Crane GM, Ishaug SL, Mikos AG (1995) Bone tissue engineering. Nat Med 1:1322–1324PubMedGoogle Scholar
  12. Freed LE, Grande DA, Lingbin Z, Emmanual J, Marquis JC, Langer R (1994) Joint resurfacing using allograft chondrocytes and synthetic biodegradable polymer scaffolds. J Biomed Mater Res 28:891–899PubMedGoogle Scholar
  13. Freed LE, Martin I, Vunjak-Novakovic G (1999) Frontiers in tissue engineering. In vitro modulation of chondrogenesis. Clin Orthop 367 (Suppl):S46–S58CrossRefPubMedGoogle Scholar
  14. Friedenstein AJ (1976) Precursor cells of mechanocytes. Int Rev Cytol 47:327–359PubMedGoogle Scholar
  15. Glowacki J, Mulliken JB (1985) Demineralized bone implants. Clin Plast Surg 12:233–241PubMedGoogle Scholar
  16. Gojo S, Gojo N, Takeda Y, Mori T, Abe H, Kyo S, Hata J, Umezawa A (2003) In vivo cardiovasculogenesis by direct injection of isolated adult mesenchymal stem cells. Exp Cell Res 288:51–59CrossRefPubMedGoogle Scholar
  17. Gopferich A, Peter SJ, Lucke A, Lu L, Mikos AG (1999) Modulation of marrow stromal cell function using poly(D,L-lactic acid)-block-poly(ethylene glycol)-monomethyl ether surfaces J Biomed Mater Res 46:390–398Google Scholar
  18. Haynesworth SE, Goshima J, Goldberg VM, Caplan AI (1992) Characterization of cells with osteogenic potential from human marrow. Bone 13:81–88PubMedGoogle Scholar
  19. Ishaug SL, Crane GM, Miller MJ, Yasko AW, Yaszemski MJ, Mikos AG (1997) Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds. J Biomed Mater Res 36:17–28PubMedGoogle Scholar
  20. Ishaug-Riley SL, Crane-Kruger GM, Yaszemski MJ, Mikos AG (1998) Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers. Biomaterials 19:1405–1412CrossRefPubMedGoogle Scholar
  21. Kikuchi M, Koyama Y, Takakuda K, Miyairi H, Shirahama N, Tanaka J (2002) In vitro change in mechanical strength of beta-tricalcium phosphate/copolymerized poly-L-lactide composites and their application for guided bone regeneration. J Biomed Mater Res 62:265–272CrossRefPubMedGoogle Scholar
  22. Kohyama J, Abe H, Shimazaki T, Koizumi A, Nakashima K, Gojo S, Taga T, Okano H, Hata J, Umezawa A (2001) Brain from bone: efficient meta-differentiation of marrow stroma-derived mature osteoblasts to neurons with Noggin or a demethylating agent. Differentiation 68:235–244CrossRefPubMedGoogle Scholar
  23. Lane JM, Yasko AW, Tomin E, Cole BJ, Waller S, Browne M, Turek T, Gross J (1999) Bone marrow and recombinant human bone morphogenetic protein-2 in osseous repair. Clin Orthop 361:216–227PubMedGoogle Scholar
  24. Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926PubMedGoogle Scholar
  25. Laurencin CT, El-Amin SF, Ibim SE, Willoughby DA, Attawia M, Allcock HR, Ambrosio AA (1996) A highly porous 3-dimensional polyphosphazene polymer matrix for skeletal tissue regeneration J Biomed Mater Res 30:133–138Google Scholar
  26. Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Pan J, Sano M, Takahashi T, Hori S, Abe H, Hata J, Umezawa A, Ogawa S (1999) Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 103:697–705PubMedGoogle Scholar
  27. Maniatopoulos C, Sodek J, Melcher AH (1988) Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats. Cell Tissue Res 254:317–330PubMedGoogle Scholar
  28. Mikos AG, McIntire LV, Anderson JM, Babensee JE (1998) Host response to tissue engineered devices. Adv Drug Deliv Rev 33:111–139CrossRefPubMedGoogle Scholar
  29. Minuth WW, Sittinger M, Kloth S (1998) Tissue engineering: generation of differentiated artificial tissues for biomedical applications. Cell Tissue Res 291:1–11PubMedGoogle Scholar
  30. Murphy WL, Peters MC, Kohn DH, Mooney DJ (2000) Sustained release of vascular endothelial growth factor from mineralized poly(lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials 21:2521–2527CrossRefPubMedGoogle Scholar
  31. Naughton GK (2002) From lab bench to market: critical issues in tissue engineering. Ann N Y Acad Sci 961:372–385PubMedGoogle Scholar
  32. Ochi K, Chen G, Ushida T, Gojo S, Segawa K, Tai H, Ueno K, Ohkawa H, Mori T, Yamaguchi A, Toyama Y, Hata J, Umezawa A (2003) Use of isolated mature osteoblasts in abundance acts as desired-shaped bone regeneration in combination with a modified poly-DL-lactic-co-glycolic acid (PLGA)-collagen sponge. J Cell Physiol 194:45–53CrossRefPubMedGoogle Scholar
  33. Ohgushi H, Okumura M, Tamai S, Shors EC, Caplan AI (1990) Marrow cell induced osteogenesis in porous hydroxyapatite and tricalcium phosphate: a comparative histomorphometric study of ectopic bone formation. J Biomed Mater Res 24:1563–1570PubMedGoogle Scholar
  34. Ohgushi H, Dohi Y, Yoshikawa T, Tamai S, Tabata S, Okunaga K, Shibuya T (1996) Osteogenic differentiation of cultured marrow stromal stem cells on the surface of bioactive glass ceramics. J Biomed Mater Res 32:341–348CrossRefPubMedGoogle Scholar
  35. Oldham JB, Lu L, Zhu X, Porter BD, Hefferan TE, Larson DR, Currier BL, Mikos AG, Yaszemski MJ (2000) Biological activity of rhBMP-2 released from PLGA microspheres. J Biomech Eng 122:289–292CrossRefPubMedGoogle Scholar
  36. Osborn JF, Newesely H (1980) The material science of calcium phosphate ceramics. Biomaterials 1:108–111CrossRefPubMedGoogle Scholar
  37. Owen M, Friedenstein AJ (1988) Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found Symp 136:42–60PubMedGoogle Scholar
  38. Peter SJ, Lu L, Kim DJ, Stamatas GN, Miller MJ, Yaszemski MJ, Mikos AG (2000) Effects of transforming growth factor beta1 released from biodegradable polymer microparticles on marrow stromal osteoblasts cultured on poly(propylene fumarate) substrates. J Biomed Mater Res 50:452–462CrossRefPubMedGoogle Scholar
  39. Pitaru S, Kotev-Emeth S, Noff D, Kaffuler S, Savion N (1993) Effect of basic fibroblast growth factor on the growth and differentiation of adult stromal bone marrow cells: enhanced development of mineralized bone-like tissue in culture. J Bone Miner Res 8:919–929Google Scholar
  40. Sato T, Chen G, Ushida T, Ishii T, Ochiai N, Tateishi T (2001) Tissue-engineered cartilage by in vivo culturing of chondrocytes in PLGA-collagen hybrid sponge. Mater Sci Eng C17:83–89Google Scholar
  41. Tabata Y, Miyao M, Ozeki M, Ikada Y (2000) Controlled release of vascular endothelial growth factor by use of collagen hydrogels. J Biomater Sci Polym Ed 11:915–930CrossRefPubMedGoogle Scholar
  42. Thomson RC, Yaszemski MJ, Powers JM, Mikos AG (1995) Fabrication of biodegradable polymer scaffolds to engineer trabecular bone. J Biomater Sci Polym Ed 7:23–38PubMedGoogle Scholar
  43. Umezawa A, Tachibana K, Harigaya K, Kusakari S, Kato S, Watanabe Y, Takano T (1991) Colony-stimulating factor 1 expression is down-regulated during the adipocyte differentiation of H-1/A marrow stromal cells and induced by cachectin/tumor necrosis factor. Mol Cell Biol 11:920–927PubMedGoogle Scholar
  44. Umezawa A, Maruyama T, Segawa K, Shadduck RK, Waheed A, Hata J (1992) Multipotent marrow stromal cell line is able to induce hematopoiesis in vivo. J Cell Physiol 151:197–205PubMedGoogle Scholar
  45. Urist MR (1965) Bone: formation by autoinduction. Science 150:893–899PubMedGoogle Scholar
  46. Vunjak-Novakovic G, Obradovic B, Martin I, Bursac PM, Langer R, Freed LE (1998) Dynamic cell seeding of polymer scaffolds for cartilage tissue engineering. Biotechnol Prog 14:193–202CrossRefPubMedGoogle Scholar
  47. Wake MC, Gerecht PD, Lu L, Mikos AG (1998) Effects of biodegradable polymer particles on rat marrow-derived stromal osteoblasts in vitro. Biomaterials 19:1255–1268CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Kohei Tsuchiya
    • 1
    • 2
    • 3
    • 4
  • Taisuke Mori
    • 1
    • 2
  • Guoping Chen
    • 4
    • 5
  • Takashi Ushida
    • 5
    • 6
  • Tetsuya Tateishi
    • 4
  • Takeo Matsuno
    • 3
  • Michiie Sakamoto
    • 2
  • Akihiro Umezawa
    • 1
    Email author
  1. 1.Department of Reproductive Biology and PathologyNational Research Institute for Child and Health DevelopmentTokyoJapan
  2. 2.Department of PathologyKeio University School of MedicineTokyoJapan
  3. 3.Department of Orthopedic SurgeryAsahikawa Medical CollegeHokkaidoJapan
  4. 4.Biomaterials CenterNational Institute for Materials ScienceIbarakiJapan
  5. 5.Tissue Engineering Research CenterNational Institute of Advanced Industrial Science and TechnologyHyogoJapan
  6. 6.Center for Disease Biology and Integrative Medicine, School of MedicineUniversity of TokyoTokyoJapan

Personalised recommendations