Cell and Tissue Research

, Volume 315, Issue 2, pp 157–166

Astrocyte mediated modulation of blood-brain barrier permeability does not correlate with a loss of tight junction proteins from the cellular contacts

  • Stefan Hamm
  • Bénédicte Dehouck
  • Jörg Kraus
  • Karen Wolburg-Buchholz
  • Hartwig Wolburg
  • Werner Risau
  • Roméo Cecchelli
  • Britta Engelhardt
  • Marie-Pierre Dehouck
Regular Article

Abstract

In the central nervous system (CNS) complex endothelial tight junctions (TJs) form a restrictive paracellular diffusion barrier, the blood-brain barrier (BBB). Pathogenic changes within the CNS are frequently accompanied by the loss of BBB properties, resulting in brain edema. In order to investigate whether BBB leakiness can be monitored by a loss of TJ proteins from cellular borders, we used an in vitro BBB model where brain endothelial cells in co-culture with astrocytes form a tight permeability barrier for 3H-inulin and 14C-sucrose. Removal of astrocytes from the co-culture resulted in an increased permeability to small tracers across the brain endothelial cell monolayer and an opening of the TJs to horseradish peroxidase as detected by electron microscopy. Strikingly, opening of the endothelial TJs was not accompanied by any visible change in the molecular composition of endothelial TJs as junctional localization of the TJ-associated proteins claudin-3, claudin-5, occludin, ZO-1 or ZO-2 or the adherens junction-associated proteins β-catenin or p120cas did not change. Thus, opening of BBB TJs is not readily accompanied by the complete loss of the junctional localization of TJ proteins.

Keywords

Claudins Occludin Tight junction Edema formation Blood-brain barrier Cell culture (bovine, rat) 

References

  1. Ando-Akatsuka Y, Saitou M, Hirase T, Kishi M, Sakakibara A, Itoh M, Yonemura S, Furuse M, Tsukita S (1996) Interspecies diversity of the occludin sequence: cDNA cloning of human, mouse, dog, and rat-kangaroo homologues. J Cell Biol 133:43–47PubMedGoogle Scholar
  2. Booher J, Sensenbrenner M (1972) Growth and cultivation of dissociated neurons and glial cells from embryonic chick, rat and human brain in flask cultures. Neurobiology 2:97–105PubMedGoogle Scholar
  3. Brillaut J, Berezowsky V, Cecchelli R, Dehouck MP (2002) Intercommunications between brain capillary endothelial cells and glial cells increase the transcellular permeability of the blood-brain barrier during ischemia. J Neurochem 83:807–817PubMedGoogle Scholar
  4. Cecchelli R, Dehouck B, Descamps L, Fenart L, Buee-Scherrer V, Duhem C, Lundquist S, Rentfel M, Torpier G, Dehouck MP (1999) In vitro model for evaluating drug transport across the blood-brain barrier. Adv Drug Deliv Rev 36:165–178CrossRefPubMedGoogle Scholar
  5. Crone C, Olesen SP (1982) Electrical resistance of brain microvascular endothelium. Brain Res 241:49–55CrossRefPubMedGoogle Scholar
  6. Dehouck MP, Meresse S, Delorme P, Fruchart JC, Cecchelli R (1990) An easier, reproducible, and mass-production method to study the blood-brain barrier in vitro. J Neurochem 54:1798–1801PubMedGoogle Scholar
  7. Dejana E (1996) Endothelial adherens junctions: implications in the control of vascular permeability and angiogenesis. J Clin Invest 98:1949–1953PubMedGoogle Scholar
  8. Descamps L, Cecchelli R, Torpier G (1997) Effects of tumor necrosis factor on receptor-mediated endocytosis and barrier functions of bovine brain capillary endothelial cell monolayers. J Neuroimmunol 74:173–184PubMedGoogle Scholar
  9. Engelhardt B, Risau W (1995) The development of the blood-brain barrier. In: Greenwood J, Begley D, Segal M, (eds) New concepts of a blood-brain barrier. Plenum Press, LondonGoogle Scholar
  10. Farqhuar MG, Palade GE (1963) Junctional complexes in various epithelia. J Cell Biol 17:375–412Google Scholar
  11. Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S (1993) Occludin—a novel integral membrane-protein localizing at tight junctions. J Cell Biol 123:1777–1788PubMedGoogle Scholar
  12. Furuse M, Sasaki H, Fujimoto K, Tsukita S (1998) A single gene product, claudin-1 or -2, reconstitutes tight junction strands and recruits occludin in fibroblasts. J Cell Biol 143:391–401PubMedGoogle Scholar
  13. Furuse M, Sasaki H, Tsukita S (1999) Manner of interaction of heterogenous claudin species within and between tight junction strands. J Cell Biol 147:891–903PubMedGoogle Scholar
  14. Goldstein GW (1988) Endothelial cell-astrocyte interactions. A cellular model of the blood-brain barrier. Ann N Y Acad Sci 529:31–39PubMedGoogle Scholar
  15. Gumbiner B, Simons K (1986) A functional assay for proteins involved in establishing an epithelial occluding barrier: identification of an uvomorulin-like polypeptide. J Cell Biol 102:457–468PubMedGoogle Scholar
  16. Kniesel U, Wolburg H (2000) Tight junctions of the blood-brain barrier. Cell Mol Neurobiol 20:57–76CrossRefPubMedGoogle Scholar
  17. Liebner S, Kniesel U, Kalbacher H, Wolburg H (2000a) Correlation of tight junction morphology with the expression of tight junction proteins in blood-brain barrier endothelial cells. Eur J Cell Biol 79:707–717PubMedGoogle Scholar
  18. Liebner S, Fischmann A, Rascher G, Duffner F, Grote E-H, Kalbacher H (2000b) Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta Neuropathol 100:323–331PubMedGoogle Scholar
  19. Meresse S, Dehouck MP, Delorme P, Bensaid M, Tauber JP, Delbart C, Fruchart JC, Cecchelli R (1989) Bovine brain endothelial cells express tight junctions and monoamine oxidase activity in long-term culture. J Neurochem 53:1363–1371Google Scholar
  20. Mitic LL, Van Itallie CM, Anderson JM (2000) Molecular physiology and pathophysiology of tight junctions. I. Tight junction structure and function: lessons from mutant animals and proteins. Am J Physiol 279:G250–G254PubMedGoogle Scholar
  21. Morita K, Furuse M, Fujimoto K, Tsukita S (1999a) Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands. Proc Natl Acad Sci U S A 96:511–516PubMedGoogle Scholar
  22. Morita K, Sasaki H, Furuse M, Tsukita S (1999b) Endothelial claudin: claudin-5/TMVCF constitutes tight junction strands in endothelial cells. J Cell Biol 147:185–194CrossRefPubMedGoogle Scholar
  23. Nico B, Frigeri A, Nicchia GP, Corsi P, Ribatti D, Quondamatteo F, Herken R, Girolamo F, Marzullo A, Svelto M, Roncali L (2003) Severe alterations of endothelial and glial cells in the blood-brain barrier of dystrophic mdx mice. Glia 42:235–51PubMedGoogle Scholar
  24. Phelps CH (1972) The development of glio-vascular relationships in the rat spinal cord. An electron microscopic study. Z Zellforsch Mikrosk Anat 128:555–563PubMedGoogle Scholar
  25. Rapoport SI, Robinson PJ (1986) Tight junctional modifications as the basis of osmotic opening of the blood-brain barrier. Ann N Y Acad Sci 481:250–267PubMedGoogle Scholar
  26. Rubin LL, Hall DE, Porter S, Barbu K, Cannon C, Horner HC, Janatpour M, Liaw CW, Manning K, Morales J, Tanner LI, Tomaselli KJ (1991) A cell-culture model of the blood-brain barrier. J Cell Biol 115:1725–1735PubMedGoogle Scholar
  27. Saitou M, Furuse M, Sasaki H, Schulzke J-D, Fromm M, Takano H, Noda T, Tsukita S (2000) Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell 22:4131–4142Google Scholar
  28. Schulze C, Firth JA (1993) Immunohistochemical localization of adherens junction components in blood-brain-barrier microvessels of the rat. J Cell Sci 104:773–782PubMedGoogle Scholar
  29. Siflinger-Birnboim A, Del Vecchio PJ, Ciooper JA, Blumenstock FA, Shepard JN, Mailik AB (1987) Molecular sieving characteristics of the cultured endothelial monolayer. J Cell Physiol 132:111–117PubMedGoogle Scholar
  30. Tsukita S, Furuse M, Itoh M (1999) Structural and signalling molecules come together at tight junctions. Curr Opin Cell Biol 11:628–633PubMedGoogle Scholar
  31. Wolburg H, Lippoldt A (2002) Tight junctions of the blood-brain barrier: Development, composition and regulation. Vasc Pharmacol 38:323–337CrossRefGoogle Scholar
  32. Wolburg H, Neuhaus J, Kniesel U, Krauss B, Schmid EM, Ocalan M, Farrell C, Risau W (1994) Modulation of tight junction structure in blood-brain-barrier endothelial-cells—effects of tissue-culture, 2nd messengers and co-cultured astrocytes. J Cell Sci 107:1347–1357PubMedGoogle Scholar
  33. Wolburg H, Wolburg-Buchholz K, Kraus J, Rascher-Eggstein G, Liebner S, Hamm S, Duffner F, Grote E-H, Risau W, Engelhardt B (2003) Localization of claudin-3 in tight junctions of the blood-brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme. Acta Neuropathol 105:586–592PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Stefan Hamm
    • 1
    • 6
  • Bénédicte Dehouck
    • 1
    • 3
  • Jörg Kraus
    • 1
    • 2
  • Karen Wolburg-Buchholz
    • 1
    • 5
  • Hartwig Wolburg
    • 5
  • Werner Risau
  • Roméo Cecchelli
    • 3
  • Britta Engelhardt
    • 1
    • 2
    • 4
  • Marie-Pierre Dehouck
    • 3
  1. 1.Max Planck Institute for Physiological and Clinical ResearchBad NauheimGermany
  2. 2.Max Planck Institute for Vascular BiologyMünsterGermany
  3. 3.Unité mixte Institut Pasteur de Lille-Université d’ArtoisU.A. 2465-Faculté des Sciences Jean PerrinLensFrance
  4. 4.Theodor Kocher InstituteUniversity of BernBernSwitzerland
  5. 5.Institute for PathologyTübingenGermany
  6. 6.Wyeth Vaccine ResearchPearl RiverUSA

Personalised recommendations