Cell and Tissue Research

, Volume 314, Issue 1, pp 131–144 | Cite as

Integrins in angiogenesis: multitalented molecules in a balancing act

  • Kairbaan M. Hodivala-Dilke
  • Andrew R. Reynolds
  • Louise E. Reynolds


Over the last 10–15 years the varied roles of cell adhesion molecules in the development of new blood vessels have received extensive attention. To date, more than 500 publications have been dedicated specifically to the role of a single family of adhesion molecules, namely integrins, in the process of angiogenesis. Although one can now appreciate the involvement of integrins in this process, and indeed antagonists of integrins are presently being tested as anti-angiogenic treatments, the precise regulation and exact action of integrins is still unclear. Here we will clarify the varied role of integrins and aim to elucidate and simplify the combined functions of these molecules in angiogenesis.


Integrins Angiogenesis Cell adhesion molecules Neovascularisation 



We would like to thank Fiona Parkinson for her invaluable help in preparing this manuscript.


  1. Adams JC (2001) Thrombospondins: multifunctional regulators of cell interactions. Annu Rev Cell Dev Biol 17:25–51CrossRefPubMedGoogle Scholar
  2. Albelda SM, Daise M, Levine EM, Buck CA (1989) Identification and characterization of cell-substratum adhesion receptors on cultured human-endothelial cells. J Clin Invest 83:1992–2002PubMedGoogle Scholar
  3. Aoka Y, Johnson FL, Penta K, Hirata K, Hidai C, Schatzman R, Varner JA, Quertermous T (2002) The embryonic angiogenic factor Del1 accelerates tumor growth by enhancing vascular formation. Microvasc Res 64:148–161CrossRefPubMedGoogle Scholar
  4. Babic AM, Kireeva ML, Kolesnikova TV, Lau LF (1998) CYR61, a product of a growth factor-inducible immediate early gene, promotes angiogenesis and tumor growth. Proc Natl Acad Sci U S A 95:6355–6360CrossRefPubMedGoogle Scholar
  5. Babic AM, Chen CC, Lau LF (1999) Fisp12/mouse connective tissue growth factor mediates endothelial cell adhesion and migration through integrin alpha(v)beta(3), promotes endothelial cell survival, and induces angiogenesis in vivo. Mol Cell Biol 19:2958–2966Google Scholar
  6. Bader BL, Rayburn H, Crowley D, Hynes RO (1998) Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all αv integrins. Cell 95:507–519PubMedGoogle Scholar
  7. Bafetti LM, Young TN, Itoh Y, Stack MS (1998) Intact vitronectin induces matrix metalloproteinase-2 and tissue inhibitor of metalloproteinases-2 expression and enhanced cellular invasion by melanoma cells. J Biol Chem 273:143–149CrossRefPubMedGoogle Scholar
  8. Baker AH, Edwards DR, Murphy G (2002) Metalloproteinase inhibitors: biological actions and therapeutic opportunities. J Cell Sci 115:3719–3727CrossRefPubMedGoogle Scholar
  9. Bellahcene A, Bonjean K, Fohr B, Fedarko NS, Robey FA, Young MF, Fisher LW, Castronovo V (2000) Bone sialoprotein mediates human endothelial cell attachment and migration and promotes angiogenesis. Circ Res 86:885–891PubMedGoogle Scholar
  10. Bloch W, Forsberg E, Lentini S, Brakebusch C, Martin K, Krell HW, Weidle UH, Addicks K, Fassler R (1997) beta 1 integrin is essential for teratoma growth and angiogenesis. J Cell Biol 139:265–278CrossRefPubMedGoogle Scholar
  11. Blystone SD, Graham IL, Lindberg FP, Brown EJ (1994) Integrin αvβ3 differentially regulates adhesive and phagocytic functions of the fibronectin receptor α5β1. J Cell Biol 127:11129–11137Google Scholar
  12. Brooks PC, Montgomery AMP, Rosenfeld M, Reisfeld RA, Hu T, Klier G, Cheresh DA (1994) Integrin αvβ3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79:1157–1164PubMedGoogle Scholar
  13. Brooks PC, Stromblad S, Klemke R, Visscher D, Sarkar FH, Cheresh DA (1995) Antiintegrin αvβ3 blocks human breast cancer growth and angiogenesis in human skin. J Clin Invest 96:1815–1822PubMedGoogle Scholar
  14. Brooks PC, Silletti S, von Schalscha TL, Friedlander M, Cheresh DA (1998) Disruption of angiogenesis by PEX, a noncatalytic metalloproteinase fragment with integrin binding activity. Cell 92:391–400PubMedGoogle Scholar
  15. Buckley CD, Pilling D, Henriquez NV, Parsonage G, Threlfall K, Scheel-Toellner D, Simmons DL, Albar AN, Lord JM, Salmon M (1999) RGD peptides induce apoptosis by direct caspase-3 activation. Nature 397:534–539CrossRefPubMedGoogle Scholar
  16. Burke PA, DeNardo SJ, Miers LA, Lamborn KR, Matzku S, DeNardo GL (2002) Cilengitide targeting of alpha(v)beta(3) integrin receptor synergizes with radioimmunotherapy to increase efficacy and apoptosis in breast cancer xenografts. Cancer Res 62:4263–4272PubMedGoogle Scholar
  17. Byzova TV, Plow EF (1998) Activation of αvβ3 on vascular cells controls recognition of prothrombin. J Cell Biol 143:2081–2092CrossRefPubMedGoogle Scholar
  18. Byzova TV, Goldman CK, Pampori N, KA T, Bett A, Shattil SJ, Plow EF (2000) A mechanism for modulation of cellular responses to VEGF: activation of the integrins. Mol Cell 6:851–860PubMedGoogle Scholar
  19. Camenisch G, Pisabarro MT, Sherman D, Kowalski J, Nagel M, Hass P, Xie MH, Gurney A, Bodary S, Liang XH, Clark K, Beresini M, Ferrara N, Gerber HP (2002) ANGPTL3 stimulates endothelial cell adhesion and migration via integrin alpha(v)beta(3) and induces blood vessel formation in vivo. J Biol Chem 277:17281–17290CrossRefPubMedGoogle Scholar
  20. Carlson TR, Feng YZ, Maisonpierre PC, Mrksich M, Morla AO (2001) Direct cell adhesion to the angiopoietins mediated by integrins. J Biol Chem 276:26516–26525CrossRefPubMedGoogle Scholar
  21. Carmeliet P (2002) Integrin indecision. Nat Med. 8:14–16Google Scholar
  22. Chen JC, Diacovo TG, Grenache DG, Santoro SA, Zutter MM (2002) The alpha(2) integrin subunit-deficient mouse—a multifaceted phenotype including defects of branching morphogenesis and hemostasis. Am J Pathol 161:337–344PubMedGoogle Scholar
  23. Cheresh DA, Stupack DG (2002) Integrin-mediated death: an explanation of the integrin-knockout phenotype? Nat Med 8:193–194CrossRefPubMedGoogle Scholar
  24. Clark EA, Brugge JS (1995) Integrins and signal transduction pathways: the road taken. Science 268:233–239PubMedGoogle Scholar
  25. Collo G, Pepper MS (1999) Endothelial cell integrin alpha 5 beta 1 expression is modulated by cytokines and during migration in vitro. J Cell Sci 112:569–578PubMedGoogle Scholar
  26. Dechantsreiter MA, Planker E, Matha B, Lohof E, Holzemann G, Jonczyk A, Goodman SL, Kessler H (1999) N-methylated cyclic RGD peptides as highly active and selective alpha(v)beta(3) integrin antagonists. J Med Chem 42:3033–3040CrossRefPubMedGoogle Scholar
  27. Deroanne C, Vouret-Craviari V, Pouysségur J (2003) EphrinA1 inactivates integrin-mediated vascular smooth muscle cell spreading via the Rac/PAK pathway. J Cell Sci 116:1367–1376CrossRefPubMedGoogle Scholar
  28. Diaz-Gonzalez F, Forsyth J, Steiner B, Ginsberg MH (1996) Trans-dominant inhibition of integrin function. Mol Biol Cell 7:1939–1951PubMedGoogle Scholar
  29. DiPersio CM, Hodivala-Dilke KM, Jaenisch R, Kreidberg JA, Hynes RO (1997) α3β1 integrin is required for normal development of the epidermal basement membrane. J Cell Biol 137:729–742CrossRefPubMedGoogle Scholar
  30. DiPersio CM, van der Neut R, Georges-Labouesse E, Kreidberg JA, Sonnenberg A, Hynes RO (2000) alpha 3 beta 1 and alpha 6 beta 4 integrin receptors for laminin-5 are not essential for epidermal morphogenesis and homeostasis during skin development. J Cell Sci 113:3051–3062PubMedGoogle Scholar
  31. Dormond O, Foletti A, Paroz C, Ruegg C (2001) NSAIDs inhibit alpha V beta 3 integrin-mediated and Cdc42/Rac-dependent endothelial-cell spreading, migration and angiogenesis. Nat Med 7:1041–1047CrossRefPubMedGoogle Scholar
  32. Dowling J, Yu QC, Fuchs E (1996) beta 4 integrin is required for hemidesmosome formation, cell adhesion and cell survival. J Cell Biol 134:559–572PubMedGoogle Scholar
  33. Drake CJ, Cheresh DA, Little CD (1995) An antagonist of integrin αvβ3 prevents maturation of blood vessels during embryonic neovascularization. J Cell Sci 108:2655–2661PubMedGoogle Scholar
  34. Eliceiri BP, Cheresh DA (1999) The role of αv integrins during angiogenesis: insights into potential mechanisms of action and clinical development. J Clin Invest 103:1227–1230PubMedGoogle Scholar
  35. Eliceiri BP, Paul R, Schwartzberg PL, Hood JD, Leng J, Cheresh DA (1999) Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol Cell 4:915–924PubMedGoogle Scholar
  36. Enenstein J, Kramer RH (1994) Confocal microscopic analysis of integrin expression on the microvasculature and its sprouts in the neonatal foreskin. J Invest Dermatol 103:381–386PubMedGoogle Scholar
  37. Fassler R, Pfaff M, Murphy J, Noegel AA, Johansson S, Timpl R, Albrecht R (1995) Lack of b1 integrin gene in embryonic stem cells affects morphology, adhesion, and migration but not integration into the inner cell mass of blastocysts. J Cell Biol 128:979–988PubMedGoogle Scholar
  38. Francis SE, Goh KL, Hodivala-Dilke K, Bader BL, Stark M, Davidson D, Hynes RO (2002) Central roles of alpha(5)beta(1) integrin and fibronectin in vascular development in mouse embryos and embryoid bodies. Arterioscler Thromb Vasc Biol 22:927–933CrossRefPubMedGoogle Scholar
  39. Friedlander M, Brooks PC, Shaffer RW, Kincaid CM, Varner JA, Cheresh DA (1995) Definition of two angiogenic pathways by distinct αv integrins. Science 270:1500–1502PubMedGoogle Scholar
  40. Friedlander M, Theesfeld CL, Sugita M, Fruttiger M, Thomas MA, Chang S, Cheresh DA (1996) Involvement of integrins αvβ3 and αvβ5 in ocular neovascular diseases. Proc Natl Acad Sci U S A 93:9764–9769CrossRefPubMedGoogle Scholar
  41. Frisch SM, Francis H (1994) Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol 124:619–626PubMedGoogle Scholar
  42. Fujiwara H, Kikkawa Y, Sanzen N, Sekiguchi K (2001) Purification and characterization of human laminin-8—laminin-8 stimulates cell adhesion and migration through alpha(3)beta(1) and alpha(6)beta(1) integrins. J Biol Chem 276:17550–17558CrossRefPubMedGoogle Scholar
  43. Funahashi Y, Sugi NH, Semba T, Yamamoto Y, Hamaoka S, Tsukahara-Tamai N, Ozawa Y, Tsuruoka A, Nara K, Takahashi K, Okabe T, Kamata J, Owa T, Ueda N, Haneda T, Yonaga M, Yoshimatsu K, Wakabayashi T (2002) Sulfonamide derivative, E7820, is a unique angiogenesis inhibitor suppressing an expression of integrin alpha 2 subunit on endothelium. Cancer Res 62:6116–6123PubMedGoogle Scholar
  44. Gao BC, Saba TM, Tsan MF (2002) Role of alpha(v)beta(3)-integrin in TNF-alpha-induced endothelial cell migration. Am J Physiol Cell Physiol 283:C1196–C1205PubMedGoogle Scholar
  45. Gardner H, Kreidberg J, Koteliansky V, Jaenisch R (1996) Deletion of integrin alpha 1 by homologous recombination permits normal murine development but gives rise to a specific deficit in cell adhesion. Dev Biol 175:301–313CrossRefPubMedGoogle Scholar
  46. George EL, GeorgesLabouesse EN, Patelking RS, Rayburn H, Hynes RO (1993) Defects in mesoderm, neural-tube and vascular development in mouse embryos lacking fibronectin. Development 119:1079–1091PubMedGoogle Scholar
  47. George EL, Baldwin HS, Hynes RO (1997) Fibronectins are essential for heart and blood vessel morphogenesis but are dispensable for initial specification of precursor cells. Blood 90:3073–3081PubMedGoogle Scholar
  48. GeorgesLabouesse E, Messaddeq N, Yehia G, Cadalbert L, Dierich A, LeMeur M (1996) Absence of integrin alpha 6 leads to epidermolysis bullosa and neonatal death in mice. Nat Genet 13:370–373PubMedGoogle Scholar
  49. Giancotti FG (2000) Complexity and specificity of integrin signalling. Nat Cell Biol 2:E13–E14PubMedGoogle Scholar
  50. Giancotti FG, Ruoslahti E (1999) Integrin signaling. Science 285:1028–1032CrossRefPubMedGoogle Scholar
  51. Gingras D, Lamy S, Beliveau R (2000) Tyrosine phosphorylation of the vascular endothelial-growth-factor receptor-2 (VEGFR-2) is modulated by Rho proteins. Biochem J 348:273–280CrossRefPubMedGoogle Scholar
  52. Goh KL, Yang JT, Hynes R (1997) Mesodermal defects and cranial neural crest apoptosis in alpha 5 integrin-null embryos. Development 124:4309–4319PubMedGoogle Scholar
  53. Gonzalez AM, Gonzales M, Herron GS, Nagavarapu U, Hopkinson SB, Tsuruta D, Jones JCR (2002) Complex interactions between the laminin alpha 4 subunit and integrins regulate endothelial cell behavior in vitro and angiogenesis in vivo. Proc Natl Acad Sci U S A 99:16075–16080CrossRefPubMedGoogle Scholar
  54. Grzeszkiewicz TM, Lindner V, Chen NY, Lam SCT, Lau LF (2002) The angiogenic factor cysteine-rich 61 (CYR61, CCN1) supports vascular smooth muscle cell adhesion and stimulates chemotaxis through integrin alpha(6)beta(1) and cell surface heparan sulfate proteoglycans. Endocrinology 143:1441–1450Google Scholar
  55. Gutheil JC, Campbell TN, Pierce PR, Watkins JD, Huse WD, Bodkin DJ, Cheresh DA (2000) Targeted antiangiogenic therapy for cancer using Vitaxin: a humanized monoclonal antibody to the integrin alphavbeta3. Clin Cancer Res 6:3056–3061PubMedGoogle Scholar
  56. Hammes H-P, Brownlee M, Jonczyk A, Sutter A, Preissner KT (1996) Subcutaneous injection of a cyclic peptide antagonist of vitronectin receptor-type integrins inhibits retinal neovascularization. Nat Med 2:529–533PubMedGoogle Scholar
  57. Hidai C, Zupancic T, Penta K, Mikhail A, Kawana M, Quertermous EE, Aoka Y, Fukagawa M, Matsui Y, Platika D, Auerbach R, Hogan BLM, Snodgrass R, Quertermous T (1998) Cloning and characterization of developmental endothelial locus-1: an embryonic endothelial cell protein that binds the alpha v beta 3 integrin receptor. Genes Dev 12:21–33PubMedGoogle Scholar
  58. Hodivala-Dilke KM, McHugh KP, Tsakiris DA, Rayburn H, Crowley D, Ullman-Cullere M, Ross FP, Coller BS, Teitelbaum S, Hynes RO (1999) Beta3-integrin-deficient mice are a model for Glanzmann thrombasthenia showing placental defects and reduced survival. J Clin Invest 103:229–238PubMedGoogle Scholar
  59. Hood JD, Bednarski M, Frausto R, Guccione S, Reisfeld RA, Xiang R, Cheresh DA (2002) Tumor regression by targeted gene delivery to the neovasculature. Science 296:2404–2407CrossRefPubMedGoogle Scholar
  60. Huang X, Griffiths M, Wu J, Farese RVJ, Sheppard D (2000) Normal development, wound healing, and adenovirus susceptibility in beta5-deficient mice. Mol Cell Biol 20:755–759CrossRefPubMedGoogle Scholar
  61. Hughes SE (1996) Functional characterization of the spontaneously transformed human umbilical vein endothelial cell line ECV304: use in an in vitro model of angiogenesis. Exp Cell Res 225:171–185CrossRefPubMedGoogle Scholar
  62. Hutchings H, Ortega N, Plouet J (2003) Extracellular matrix bound vascular endothelial growth factor promotes endothelial cell adhesion, migration, and survival through integrin ligation. FASEB J (in press)Google Scholar
  63. Hynes RO (1992) Integrins: versatility modulation and signaling in cell adhesion. Cell 69:11–25PubMedGoogle Scholar
  64. Hynes RO (2002) A reevaluation of integrins as regulators of angiogenesis. Nat Med 8:918–921CrossRefPubMedGoogle Scholar
  65. Ingber DE, Folkman J (1989) Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix. J Cell Biol 109:317–330PubMedGoogle Scholar
  66. Jiang C, Jiang W, Ip C, Ganther H, Lu J (1999) Selenium-induced inhibition of angiogenesis in mammary cancer at chemopreventive levels of intake. Mol Carcinog 26:213–215PubMedGoogle Scholar
  67. Jimenez B, Volpert OV, Crawford SE, Febbraio M, Silverstein RL, Bouck N (2000) Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat Med 6:41–48PubMedGoogle Scholar
  68. Kanda S, Tomasini-Johansson B, Klint P, Dixelius J, Rubin K, Claesson-Welsh L (1999) Signaling via fibroblast growth factor receptor-1 is dependent on extracellular matrix in capillary endothelial cell differentiation. Exp Cell Res 248:203–213PubMedGoogle Scholar
  69. Kang IC, Lee YD, Kim DS (1999) A novel disintegrin salmosin inhibits tumor angiogenesis. Cancer Res 59:3754–3760PubMedGoogle Scholar
  70. Kanno S, Oda N, Abe M, Terai Y, Ito M, Shitara K, Tabayashi K, Shibuya M, Sato Y (2000) Roles of two VEGF receptors, Flt-1 and KDR, in the signal transduction of VEGF effects in human vascular endothelial cells. Oncogene 19:2138–2146CrossRefPubMedGoogle Scholar
  71. Kim S, Harris M, Varner JA (2000a) Regulation of integrin avb3-mediated endothelial cell migration and angiogenesis by integrin a5b1 and protein kinase A. J Biol Chem 275:33920–33298CrossRefPubMedGoogle Scholar
  72. Kim S, Bell K, Mousa SA, Varner JA (2000b) Regulation of angiogenesis in vivo by ligation of integrin α5β1 with the central cell-binding domain of fibronectin. Am J Pathol 156:1345–1362PubMedGoogle Scholar
  73. Kim S, Bakre M, Yin H, Varner JA (2002a) Inhibition of endothelial cell survival and angiogenesis by protein kinase A. J Clin Invest 110:933–941CrossRefPubMedGoogle Scholar
  74. Kim YM, Lee YM, Kim HS, Kim JD, Choi Y, Kim KW, Lee SY, Kwon YG (2002b) TNF-related activation-induced cytokine (TRANCE) induces angiogenesis through the activation of Src and phospholipase C (PLC) in human endothelial cells. J Biol Chem 277:6799–6805CrossRefPubMedGoogle Scholar
  75. Kiosses WB, Hood J, Yang SY, Gerritsen ME, Cheresh DA, Alderson N, Schwartz MA (2002) A dominant-negative p65 PAK peptide inhibits angiogenesis. Circ Res 90:697–702CrossRefPubMedGoogle Scholar
  76. Korff T, Augustin HG (1999) Tensional forces in fibrillar extracellular matrices control directional capillary sprouting. J Cell Sci 112:3249–3258PubMedGoogle Scholar
  77. Kreidberg JA, Donovan MJ, Goldstein SL, Rennke H, Shepherd K, Jones RC, Jaenisch R (1996) Alpha 3 beta 1 integrin has a crucial role in kidney and lung organogenesis. Development 122:3537–3547PubMedGoogle Scholar
  78. Kroon ME, Koolwijk P, van der Vecht B, van Hinsbergh VW (2000) Urokinase receptor expression on human microvascular endothelial cells is increased by hypoxia: implications for capillary-like tube formation in a fibrin matrix. Blood 96:2775–2783PubMedGoogle Scholar
  79. Kumar CC, Armstrong L, Yin Z, Malkowski M, Maxwell E, Ling H, Yaremko B, Liu M, Varner J, Smith EM, Neustadt B, Nechuta T (2000) Targeting integrins alpha(v)beta(3) and alpha(v)beta(5) for blocking tumor-induced angiogenesis. In: Angiogenesis: from the molecular to integrative pharmacology. pp 169–180Google Scholar
  80. Kumar CC, Malkowski M, Yin ZZ, Tanghetti E, Yaremko B, Nechuta T, Varner J, Liu M, Smith EM, Neustadt B, Presta M, Armstrong L (2001) Inhibition of angiogenesis and tumor growth by SCH221153, a dual alpha(v)beta(3) and alpha(v)beta(5) integrin receptor antagonist. Cancer Res 61:2232–2238PubMedGoogle Scholar
  81. Kyriakides TR, Zhu YH, Smith LT, Bain SD, Yang ZT, Lin MT, Danielson KG, Iozzo RV, LaMarca M, McKinney CE, Ginns EI, Bornstein P (1998) Mice that lack thrombospondin 2 display connective tissue abnormalities that are associated with disordered collagen fibrillogenesis, an increased vascular density, and a bleeding diathesis. J Cell Biol 140:419–430PubMedGoogle Scholar
  82. Lafleur MA, Handsley MM, Knauper V, Murphy G, Edwards DR (2002) Endothelial tubulogenesis within fibrin gels specifically requires the activity of membrane-type-matrix metalloproteinases (MT-MMPs). J Cell Sci 115:3427–3438PubMedGoogle Scholar
  83. Lawler J (2000) The functions of thrombospondin-1 and 2. Curr Opin Cell Biol 12:634–640CrossRefPubMedGoogle Scholar
  84. Lawler J, Sunday M, Thibert V, Duquette M, George EL, Rayburn H, Hynes RO (1998) Thrombospondin-1 is required for normal murine pulmonary homeostasis and its absence causes pneumonia. J Clin Invest 101:982–992PubMedGoogle Scholar
  85. Legler DF, Wiedle G, Ross FP, Imhof BA (2001) Superactivation of integrin alpha v beta 3 by low antagonist concentrations. J Cell Sci 114:1545–1553PubMedGoogle Scholar
  86. Leu SJ, Lam SCT, Lau LF (2002) Pro-angiogenic activities of CYR61 (CCN1) mediated through integrins alpha(v)beta(3) and alpha(6)beta(1) in human umbilical vein endothelial cells. J Biol Chem 277:46248–46255CrossRefPubMedGoogle Scholar
  87. Li R, Mitra N, Gratowski H, Vilaire G, Litinov R, Nagasami C, Weisel JW, Lear JD, DeGrado WF, Bennett JS (2003) Activation of integrin α11bβ3 by modulation of transmembrane helix associations. Science 300:795–798CrossRefPubMedGoogle Scholar
  88. Liddington RC, Ginsberg MH (2002) Integrin activation takes shape. J Cell Biol 158:833–839CrossRefPubMedGoogle Scholar
  89. Lode HN, Moehler T, Xiang R, Jonczyk A, Gillies SD, Cheresh DA, Reisfeld RA (1999) Synergy between an antiangiogenic integrin alphav antagonist and an antibody-cytokine fusion protein eradicates spontaneous tumor metastases. Proc Natl Acad Sci U S A 96:1591–1596CrossRefPubMedGoogle Scholar
  90. Maeshima Y, Colorado PC, Kalluri R (2000) Two RGD-independent alpha vbeta 3 integrin binding sites on tumstatin regulate distinct anti-tumor properties. J Biol Chem 275:23745–23750CrossRefPubMedGoogle Scholar
  91. Maeshima Y, Yerramalla UL, Dhanabal M, Holthaus KA, Barbashov S, Kharbanda S, Reimer C, Manfredi M, Dickerson WM, Kalluri R (2001) Extracellular matrix-derived peptide binds to alpha(v)beta(3) integrin and inhibits angiogenesis. J Biol Chem 276:31959–31968CrossRefPubMedGoogle Scholar
  92. Maeshima Y, Sudhakar A, Lively JC, Ueki K, Kharbanda S, Kahn CR, Sonenberg N, Hynes RO, Kalluri R (2002) Tumstatin, an endothelial cell-specific inhibitor of protein synthesis. Science 295:140–143CrossRefPubMedGoogle Scholar
  93. Marx M, Warren SL, Madri JA (2001) pp60(c-src) modulates microvascular endothelial phenotype and in vitro angiogenesis. Exp Mol Pathol 70:201–213CrossRefPubMedGoogle Scholar
  94. Max R, Gerritsen RCM, Nooijen P, Goodman SL, Sutter A, Keilholz U, Ruiter DJ, DeWaal RMW (1997) Immunohistochemical analysis of integrin alpha v beta 3 expression on tumor associated vessels of human carcinomas—implications for anti-angiogenic treatment approaches. Eur J Cancer 33:208–208CrossRefGoogle Scholar
  95. Miranti CK, Brugge JS (2002) Sensing the environment: a historical perspective on integrin signal transduction. Nat Cell Biol 4:E83–E90CrossRefPubMedGoogle Scholar
  96. Mitjans F, Meyer T, Fittschen C, Goodman S, Jonczyk A, Marshall JF, Reyes G, Piulats J (2000) In vivo therapy of malignant melanoma by means of antagonists of alpha v integrins. Int J Cancer 87:716–723CrossRefPubMedGoogle Scholar
  97. Mo FE, Muntean AG, Chen CC, Stolz DB, Watkins SC, Lau LF (2002) CYR61 (CCN1) is essential for placental development and vascular integrity. Mol Cell Biol 22:8709–8720CrossRefPubMedGoogle Scholar
  98. Oreilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao YH, Sage EH, Folkman J (1994) Angiostatin—a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung-carcinoma. Cell 79:315–328PubMedGoogle Scholar
  99. Oreilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88:277–285PubMedGoogle Scholar
  100. Paik JH, Chae SS, Lee MJ, Thangada S, Hla T (2001) Sphingosine 1-phosphate-induced endothelial cell migration requires the expression of EDG-1 and EDG-3 receptors and Rho-dependent activation of alpha(v)beta(3)- and beta(1)-containing integrins. J Biol Chem 276:11830–11837CrossRefPubMedGoogle Scholar
  101. Pan LH, Beppu T, Kurose A, Yamauchi K, Sugawara A, Suzuki M, Ogawa A, Sawai T (2002) Neoplastic cells and proliferating endothelial cells express connective tissue growth factor (CTGF) in glioblastoma. Neurol Res 24:677–683PubMedGoogle Scholar
  102. Pozzi A, Moberg PE, Miles LA, Wagner S, Soloway P, Gardner HA (2000) Elevated matrix metalloprotease and angiostatin levels in integrin alpha 1 knockout mice cause reduced tumor vascularization. Proc Natl Acad Sci U S A 97:2202–2207CrossRefPubMedGoogle Scholar
  103. Qi JH, Claesson-Welsh L (2001) VEGF-induced activation of phosphoinositide 3-kinase is dependent on focal adhesion kinase. Exp Cell Res 263:173–182CrossRefPubMedGoogle Scholar
  104. Rehn M, Veikkola T, Kukk-Valdre E, Nakamura H, Ilmonen M, Lombardo CR, Pihlajaniemi T, Alitalo K, Vuori K (2001) Interaction of endostatin with integrins implicated in angiogenesis. PNAS 98:1024–1029CrossRefPubMedGoogle Scholar
  105. Reynolds LE, Wyder L, Lively JC, Taverna D, Robinson SD, Huang X, Sheppard D, Hynes RO, Hodivala-Dilke KM (2002) Enhanced pathological angiogenesis in mice lacking beta3 integrin or beta3 and beta5 integrins. Nat Med 8:27–34CrossRefPubMedGoogle Scholar
  106. Reynolds AR, Moghimi SM, Hodivala-Dilke K (2003) Nanoparticle-mediated gene delivery to tumour neovasculature. Trends Mol Med 9:2–4CrossRefPubMedGoogle Scholar
  107. Rodriguez-Manzaneque JC, Lane TF, Ortega MA, Hynes RO, Lawler J, Iruela-Arispe ML (2001) Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor. Proc Natl Acad Sci U S A 98:12485–12490CrossRefPubMedGoogle Scholar
  108. Rusnati M, Tanghetti E, DellEra P, Gualandris A, Presta M (1997) alpha(v)beta(3) integrin mediates the cell-adhesive capacity and biological activity of basic fibroblast growth factor (FGF-2) in cultured endothelial cells. Mol Biol Cell 8:2449–2461PubMedGoogle Scholar
  109. Schlessinger J (2000) New roles for Src kinases in control of cell survival and angiogenesis. Cell 100:293–296PubMedGoogle Scholar
  110. Schneller M, Vuori K, Ruoslahti E (1997) alpha v beta 3 integrin associates with activated insulin and PDGF beta receptors and potentiates the biological activity of PDGF. EMBO J 16:5600–5607CrossRefPubMedGoogle Scholar
  111. Schwartz MA, Ginsberg MH (2002) Networks and crosstalk: integrin signalling spreads. Nat Cell Biol 4:E65–E68PubMedGoogle Scholar
  112. Senger DR, Claffey KP, Benes JE, Perruzzi CA, Sergiou AP, Detmar M (1997) Angiogenesis promoted by vascular endothelial growth factor: regulation through alpha1beta1 and alpha2beta1 integrins. Proc Natl Acad Sci U S A 94:13612–13617PubMedGoogle Scholar
  113. Senger DR, Perruzzi CA, Streit M, Koteliansky VE, de Fougerolles AR, Detmar M (2002) The alpha(1)beta(1) and alpha(2)beta(1) integrins provide critical support for vascular endothelial growth factor signaling, endothelial cell migration, and tumor angiogenesis. Am J Pathol 160:195–204PubMedGoogle Scholar
  114. Sepp NT, Li L-J, Lee KH, Brown EJ, Caughman SW, Lawley TJ, Swerlick RA (1994) Basic fibroblast growth factor increases expression of the αvβ3 integrin complex on human microvascular endothelial cells. J Invest Dermatol 103:295–299PubMedGoogle Scholar
  115. Sheppard D (2002) Endothelial integrins and angiogenesis: not so simple anymore. J Clin Invest 110:913–914CrossRefPubMedGoogle Scholar
  116. Shin EY, Lee JY, Park MK, Chin YH, Jeong GB, Kim SY, Kim SR, Kim EG (1999) Overexpressed alpha(3)beta(1) and constitutively activated extracellular signal-regulated kinase modulate the angiogenic properties of ECV304 cells. Mol Cells 9:138–145PubMedGoogle Scholar
  117. Shono T, Mochizuki Y, Kanetake H, Kanda S (2001) Inhibition of FGF-2-mediated chemotaxis of murine brain capillary endothelial cells by cyclic RGDfV peptide through blocking the redistribution of c-Src into focal adhesions. Exp Cell Res 268:169–178CrossRefPubMedGoogle Scholar
  118. Silletti S, Kessler T, Goldberg J, Boger DL, Cheresh DA (2001) Disruption of matrix metalloproteinase 2 binding to integrin alpha vbeta 3 by an organic molecule inhibits angiogenesis and tumor growth in vivo. Proc Natl Acad Sci U S A 98:119–124PubMedGoogle Scholar
  119. Smyth SS, Patterson C (2002) Tiny dancers: the integrin-growth factor nexus in angiogenic signaling. J Cell Biol 158:17–21CrossRefPubMedGoogle Scholar
  120. Soga N, Namba N, McAllister S, Cornelius L, Teitelbaum SL, Dowdy SF, Kawamura J, Hruska KA (2001) Rho family GTPases regulate VEGF-stimulated endothelial cell motility. Exp Cell Res 269:73–87CrossRefPubMedGoogle Scholar
  121. Soldi R, Mitola S, Strasly M, Defilippi P, Tarone G, Bussolino F (1999) Role of αvβ3 integrin in the activation of vascular endothelial growth factor receptor-2. EMBO J 18:882–892Google Scholar
  122. Stephens LE, Sutherland AE, Klimanskaya IV, Andrieux A, Meneses J, Pedersen RA, Damsky CH (1995) Deletion of beta-1 integrins in mice results in inner cell mass failure and periimplantation lethality. Genes Dev 9:1883–1895PubMedGoogle Scholar
  123. Stoeltzing O, Liu WB, Reinmuth N, Fan F, Parry GC, Parikh AA, McCarty MF, Bucana CD, Mazar AP, Ellis LM (2003) Inhibition of integrin alpha(5)beta(1) function with a small peptide (ATN-161) plus continuous 5-FU infusion reduces colorectal liver metastases and improves survival in mice. Int J Cancer 104:496–503CrossRefPubMedGoogle Scholar
  124. Storgard CM, Stupack DG, Jonczyk A, Goodman SL, Fox RI, Cheresh DA (1999) Decreased angiogenesis and arthritic disease in rabbits treated with an αvβ3 antagonist. J Clin InvestGoogle Scholar
  125. Stupack DG, Cheresh DA (2002) ECM remodelling regulates angiogenesis: endothelial integrins look for new ligands. Science's STKE 2002:PE7Google Scholar
  126. Stupack DG, Puente XS, Boutsaboualoy S, Storgard CM, Cheresh DA (2001) Apoptosis of adherent cells by recruitment of caspase-8 to unligated integrins. J Cell Biol 155:459–470CrossRefPubMedGoogle Scholar
  127. Sudhakar A, Sugimoto H, Yang C, Lively J, Zeisberg M, Kalluri R (2003) Human tumstatin and human endostatin exhibit distinct antiangiogenic activities mediated by αvβ3 and α5β1 integrins. Proc Natl Acad Sci U S A 100:4766–4771CrossRefPubMedGoogle Scholar
  128. Tanghetti E, Ria R, Dell'Era P, Urbinati C, Rusnati M, Ennas MG, Presta M (2002) Biological activity of substrate-bound basic fibroblast growth factor (FGF2): recruitment of FGF receptor-1 in endothelial cell adhesion contacts. Oncogene 21:3889–3897CrossRefPubMedGoogle Scholar
  129. Tarui T, Miles LA, Takada Y (2001) Specific interaction of angiostatin with integrin alpha(v)beta(3) in endothelial cells. J Biol Chem 276:39562–39568CrossRefPubMedGoogle Scholar
  130. Taverna D, Hynes RO (2001) Reduced blood vessel formation and tumor growth in alpha5-integrin-negative teratocarcinomas and embryoid bodies. Cancer Res 61:5255–5261PubMedGoogle Scholar
  131. Tucker GC (2002) Inhibitors of integrins. Curr Opin Pharmacol 2:394–402CrossRefPubMedGoogle Scholar
  132. van der Flier A, Sonnenberg A (2001) Function and interactions of integrins. Cell Tissue Res 305:285–298PubMedGoogle Scholar
  133. van der Neut R, Krimpenfort P, Calafat J, Niessen CM, Sonnenberg A (1996) Epithelial detachment due to absence of hemidesmosomes in integrin beta 4 null mice. Nat Genet 13:366–369PubMedGoogle Scholar
  134. Varner KA, Cheresh DA (1996) Integrins and cancer. Curr Opin Cell Biol 8:724–730PubMedGoogle Scholar
  135. Whelan MC, Senger DR (2003) Collagen I initiates endothelial cell morphogenesis by inducing actin polymerization through suppression of cyclic AMP and protein kinase A. J Biol Chem 278:327–334CrossRefPubMedGoogle Scholar
  136. Xiong JP, Stehle T, Diefenbach B, Zhang R, Dunker R, Scott DL, Joachimiak A, Goodman SL, Arnaout MA (2001) Crystal structure of the extracellular segment of integrin alpha v beta3. Science 294:339–345CrossRefPubMedGoogle Scholar
  137. Xiong JP, Stehle T, Zhang RG, Joachimiak A, Frech M, Goodman SL, Aranout MA (2002) Crystal structure of the extracellular segment of integrin alpha v beta 3 in complex with an Arg-Gly-Asp ligand. Science 296:151–155Google Scholar
  138. Xu JS, Rodriguez D, Petitclerc E, Kim JJ, Hangai M, Moon YS, Davis GE, Brooks PC (2001) Proteolytic exposure of a cryptic site within collagen type IV is required for angiogenesis and tumor growth in vivo (vol 154, p 1069, 2001). J Cell Biol 155:859–859CrossRefGoogle Scholar
  139. Yamada KM, Even-Ram S (2002) Integrin regulation of growth factor receptors. Nat Cell Biol 4:E75–E76CrossRefPubMedGoogle Scholar
  140. Yang JT, Rayburn H, Hynes RO (1993) Embryonic mesodermal defects in alpha(5) integrin-deficient mice. Development 119:1093–1105PubMedGoogle Scholar
  141. Yeh CH, Peng H-C, Huang T-F (1998) Accutin, a new disintegrin, inhibits angiogenesis in vitro and in vivo by acting as integrin αvβ3 antagonist and inducing apoptosis. Blood 9:3268–3276Google Scholar
  142. Yeh CH, Peng HC, Huang TF (1999) Cytokines modulate integrin alpha(v)beta(3)-mediated human endothelial cell adhesion and calcium signaling. Exp Cell Res 251:57–66CrossRefPubMedGoogle Scholar
  143. Zhu J, Motejlek K, Wang D, Zang K, Schmidt A, Reichardt LF (2002) β8 integrins are required for vascular morphogenesis in mouse embryos. Development 129:2891–2903PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Kairbaan M. Hodivala-Dilke
    • 1
  • Andrew R. Reynolds
    • 1
  • Louise E. Reynolds
    • 1
  1. 1.Cell Adhesion and Disease Laboratory, Cancer Research UK, Richard Dimbleby Department of Cancer ResearchSt. Thomas' HospitalLondonUK

Personalised recommendations