Cell and Tissue Research

, Volume 314, Issue 1, pp 119–129

Development of the blood-brain barrier

Review Article

Abstract

The endothelial cells forming the blood-brain barrier (BBB) are highly specialized to allow precise control over the substances that leave or enter the brain. An elaborate network of complex tight junctions (TJ) between the endothelial cells forms the structural basis of the BBB and restricts the paracellular diffusion of hydrophilic molecules. Additonally, the lack of fenestrae and the extremely low pinocytotic activity of endothelial cells of the BBB inhibit the transcellular passage of molecules across the barrier. On the other hand, in order to meet the high metabolic needs of the tissue of the central nervous system (CNS), specific transport systems selectively expressed in the membranes of brain endothelial cells in capillaries mediate the directed transport of nutrients into the CNS or of toxic metabolites out of the CNS. Whereas the characteristics of the mature BBB endothelium are well described, the cellular and molecular mechanisms that control the development, differentiation and maintenance of the highly specialized endothelial cells of the BBB remain unknown to date, despite the recent explosion in our knowledge of the growth factors and their receptors specifically acting on vascular endothelium during development. This review summarizes our current knowledge of the cellular and molecular mechanisms involved in the development and maintenance of the BBB.

Keywords

Blood-brain barrier Endothelial cells Tight junctions Transport Development 

References

  1. Abbott NJ (1991) Permeability and transport of glial blood-brain barriers. Ann N Y Acad Sci 633:378–394PubMedGoogle Scholar
  2. Achen MG, Clauss M, Schnürch H, Risau W (1995) The non-receptor tyrosine kinase Lyn is localized in the developing blood-brain barrier. Differentiation 59:15–24CrossRefPubMedGoogle Scholar
  3. Adams RH (2002) Vascular patterning by Eph receptor tyrosine kinases and ephrins. Semin Cell Dev Biol 13:55–60CrossRefPubMedGoogle Scholar
  4. Albrecht U, Seulberger H, Schwarz H, Risau W (1990) Correlation of blood-brain barrier function and HT7 protein distribution in chick brain circumventricular organs. Brain Res 535:49–61PubMedGoogle Scholar
  5. Bär T (1980) The vascular system of the cerebral cortex. Adv Anat Embryol Cell Biol 59:1–62Google Scholar
  6. Barber AJ, Lieth E (1997) Agrin accumulates in the brain microvascular basal lamina during development of the blood-brain barrier. Dev Dyn 208:62–74PubMedGoogle Scholar
  7. Bass T, Singer G, Slusser J, Liuzzi FJ (1992) Radial glial interaction with cerebral germinal matrix capillaries in the fetal baboon. Exp Neurol 118:126–132PubMedGoogle Scholar
  8. Bauer HC, Bauer H (2000) Neural induction of the blood-brain barrier: still an enigma. Cell Mol Neurobiol 20:13–28CrossRefPubMedGoogle Scholar
  9. Bendayan R, Lee G, Bendayan M (2002) Functional expression and localization of P-glycoprotein at the blood brain barrier. Microsc Res Tech 57:365–380CrossRefPubMedGoogle Scholar
  10. Bertossi M, Girolamo F, Errede M, Benagiano V, Virgintino D, Roncali L (2002) Developmental changes of HT7 expression in the microvessels of the chick embryo brain. Anat Embryol 205:229–233CrossRefPubMedGoogle Scholar
  11. Betz AL, Goldstein GW (1986) Specialized properties and solute transport in brain capillaries. Annu Rev Physiol 48:241–250CrossRefPubMedGoogle Scholar
  12. Biedl A, Kraus R (1898) Über eine bisher unbekannte toxische Wirkung der Gallensäure auf das Zentralnervensystem. Zentralbl Inn Med 19:1185–1200Google Scholar
  13. Bolton SJ, Anthony DC, Perry VH (1998) Loss of tight junction proteins occludin and zonula occludens-1 from cerebral vascular endothelium during neutrophil-induced blood-brain barrier breakdown in vivo. Neuroscience 86:1245–1257CrossRefPubMedGoogle Scholar
  14. Bolz S, Farrell CL, Dietz K, Wolburg H (1996) Subcellular distribution of glucose transporter (GLUT-1) during development of the blood-brain barrier in rats. Cell Tissue Res 284:355–365CrossRefPubMedGoogle Scholar
  15. Bouchaud C, Bosler O (1986) The circumventricular organs of the mammalian brain with special reference to monoaminergic innervation. Int Rev Cytol 105:283–327PubMedGoogle Scholar
  16. Bradbury M (1979) The concept of a blood-brain barrier. Wiley, ChichesterGoogle Scholar
  17. Breier G, Breviaro F, Caveda L, Berthier R, Schnürch H, Gotsch U, Vestweber D, Risau W, Dejana E (1996) Molecular cloning and expression of murine VE-cadherin in early developing cardiovascular system Blood 87:630–641Google Scholar
  18. Brightman MW, Reese TS (1969) Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 40:648–677PubMedGoogle Scholar
  19. Broadwell RD (1989) Transcytosis of macromolecules through the blood-brain barrier: a cell biological perspective and critical appraisal. Acta Neuropathol (Berl) 79:117–128Google Scholar
  20. Butt AM, Jones HC, Abbott NJ (1990) Electrical-resistance across the blood-brain-barrier in anesthetized rats—a developmental study. J Physiol 429:47–62PubMedGoogle Scholar
  21. Carmeliet P, Collen D (2000) Molecular basis of angiogenesis. Role of VEGF and VE-cadherin. Ann N Y Acad Sci 902:49–62Google Scholar
  22. Cecchelli R, Dehouck B, Descamps L, Fenart L, Buee-Scherrer V, Duhem C, Lundquist S, Rentfel M, Torpier G, Dehouck MP (1999) In vitro model for evaluating drug transport across the blood-brain barrier. Adv Drug Deliv Rev 36:165–178CrossRefPubMedGoogle Scholar
  23. Claus P, Grothe C (2001) Molecular cloning and developmental expression of rat fibroblast growth factor receptor 3. Histochem Cell Biol 115:147–55PubMedGoogle Scholar
  24. Corada M, Mariotti M, Thurston G, Smith K, Kunkel R, Brockhaus M, Lampugnani MG, Martin-Padura I, Stoppacciaro A, Ruco L, McDonald DM, Ward PA, Dejana E (1999) Vascular endothelial-cadherin is an important determinant of microvascular integrity in vivo. Proc Natl Acad Sci USA 96:9815–9820PubMedGoogle Scholar
  25. Crone C, Olesen SP (1982) Electrical resistance of brain microvascular endothelium. Brain Res 241:49–55CrossRefPubMedGoogle Scholar
  26. Cserr HF, Bundgaard M (1984) Blood-brain interfaces in vertebrates: comparative approach. Am J Physiol 246:277–288Google Scholar
  27. Cucullo L, McAllister MS, Kight K, Krizanac-Bengez L, Marroni M, Mayberg MR, Stanness KA, Janigro D (2002) A new dynamic in vitro model for the multidimensional study of astrocyte-endothelial cell interactions at the blood-brain barrier. Brain Res 951:243–254CrossRefPubMedGoogle Scholar
  28. Davis S, Yancopoulos GD (1999) The angiopoietins: Yin and Yang in angiogenesis. Curr Top Microbiol Immunol 237:173–185PubMedGoogle Scholar
  29. Dejana E (1996) Endothelial adherens junctions: implications in the control of vascular permeability and angiogenesis. J Clin Invest 98:1949–1953PubMedGoogle Scholar
  30. Dermietzel R, Krause D (1991) Molecular anatomy of the blood-brain-barrier as defined by immunocytochemistry. Int Rev Cytol 127:57–109PubMedGoogle Scholar
  31. Dermietzel R, Krause D, Kremer M, Wang C, Stevenson B (1992) Pattern of glucose transporter (Glut 1) expression in embryonic brains is related to maturation of blood-brain barrier tightness. Dev Dyn 193:152–163PubMedGoogle Scholar
  32. Duncan GS, Andrew DP, Takimoto H, Kaufman SA, Yoshida H, Spellberg J, Luis de la Pompa J, Elia A, Wakeham A, Karan-Tamir B, Muller WA, Senaldi G, Zukowski MM, Mak TW (1999) Genetic evidence for functional redundancy of platelet/endothelial cell adhesion molecule-1 (PECAM-1): CD31-deficient mice reveal PECAM-1-dependent and PECAM-1-independent functions. J Immunol 162: 3022–3030PubMedGoogle Scholar
  33. Ehrlich P (1904) Über die Beziehung chemischer Constitution, Vertheilung, und pharmakologischer Wirkung. Gesammelte Arbeiten zur Immunitätsforschung, BerlinGoogle Scholar
  34. Emoto N, Gonzalez AM, Walicke PA, Wada E, Simmons DM, Shimasaki S, Baird A (1989) Basic fibroblast growth factor (FGF) in the central nervous system: identification of specific loci of basic FGF expression in the rat brain. Growth Factors 2:21–29PubMedGoogle Scholar
  35. Engelhardt B (2001) The choroid plexus in health and disease. Microsc Res Tech 52:112–129Google Scholar
  36. Engelhardt B, Risau W (1995) The development of the blood-brain barrier. In: Greenwood J, Begley D, Segal M (eds) The development of the blood-brain barrier. Plenum, London, pp 10–100Google Scholar
  37. Engelhardt B, Conley FK, Butcher EC (1994) Cell adhesion molecules on vessels during inflammation in the mouse central nervous system. J Neuroimmunol 51:199–208CrossRefPubMedGoogle Scholar
  38. Farrell CL, Risau W (1994) Normal and abnormal development of the blood-brain barrier. Microsc Res Tech 27:495–506PubMedGoogle Scholar
  39. Ferrara N, Henzel WJ (1989) Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun 161:851–858PubMedGoogle Scholar
  40. Folkman J, Klagsbrun M (1987) Vascular physiology. A family of angiogenic peptides. Nature 329:671–672PubMedGoogle Scholar
  41. Folkman J, Klagsbrun M, Sasse J, Wadzinski M, Ingber D, Vlodavsky I (1988) A heparin-binding angiogenic protein—basic fibroblast growth factor—is stored within basement membrane. Am J Pathol 130:393–400Google Scholar
  42. Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S (1993) Occludin—a novel integral membrane-protein localizing at tight junctions. J Cell Biol 123:1777–1788PubMedGoogle Scholar
  43. Furuse M, Sasaki H, Tsukita S (1999) Manner of interaction of heterogeneous claudin species within and between tight junction strands. J Cell Biol 147:891–903PubMedGoogle Scholar
  44. Gale NW, Yancopoulos GD (1999) Growth factors acting via endothelial cell-specific receptor tyrosine kinases: VEGFs, angiopoietins, and ephrins in vascular development. Genes Dev 13:1055–1066PubMedGoogle Scholar
  45. Gerhardt H, Liebner S, Wolburg H (1996) The pecten oculi of the chicken as a new in vivo model of the blood-brain barrier. Cell Tissue Res 285:91–100PubMedGoogle Scholar
  46. Gerhardt H, Liebner S, Redies C, Wolburg H (1999) N-cadherin expression in endothelial cells during early angiogenesis in the eye and brain of the chicken: relation to blood-retina and blood-brain barrier development. Eur J Neurosci 11:1191–1201CrossRefPubMedGoogle Scholar
  47. Gerhardt H, Wolburg H, Redies C (2000) N-cadherin mediates pericytic-endothelial interaction during brain angiogenesis in the chicken. Dev Dyn 218:472–479PubMedGoogle Scholar
  48. Golden PL, Pardridge WM (2000) Brain microvascular P-glycoprotein and a revised model of multidrug resistance in brain. Cell Mol Neurobiol 20:165–181CrossRefPubMedGoogle Scholar
  49. Goldmann EE (1913) Vitalfärbung am Zentralnervensystem. Abh Preuss Wissensch Phys Math 1:1–60Google Scholar
  50. Goldstein GW (1988) Endothelial cell-astrocyte interactions. A cellular model of the blood-brain barrier. Ann N Y Acad Sci 529:31–39PubMedGoogle Scholar
  51. Hallmann R, Mayer DN, Berg EL, Broermann R, Butcher EC (1995) Novel mouse endothelial cell surface marker is suppressed during differentation of the blood-brain barrier. Dev Dyn 202:325–332PubMedGoogle Scholar
  52. Houck KA, Leung DW, Rowland AM, Winer J, Ferrara N (1992) Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. J Biol Chem 267:26031–26037PubMedGoogle Scholar
  53. Ikeda E, Flamme I, Risau W (1996) Developing brain cells produce factors capable of inducing the HT7 antigen, a blood-brain barrier-specific molecule, in chick endothelial cells. Neurosci Lett 209:149–152PubMedGoogle Scholar
  54. Janzer RC, Raff MC (1987) Astrocytes induce blood-brain barrier properties in endothelial cells. Nature 325:253–257Google Scholar
  55. Keep RF, Ennis SR, Beer ME, Betz AL (1995) Developmental changes in blood-brain barrier potassium permeability in the rat: relation to brain growth. J Physiol (Lond) 488:439–448Google Scholar
  56. Kissel K, Hamm S, Schulz M, Vecchi A, Garlanda C, Engelhardt B (1998) Immunohistochemical localization of the murine transferrin receptor (TfR) on blood-tissue barriers using a novel anti-TfR monoclonal antibody. Histochem Cell Biol110:63–72CrossRefGoogle Scholar
  57. Kniesel U, Wolburg H (2000) Tight junctions of the blood-brain barrier. Cell Mol Neurobiol 20:57–76CrossRefPubMedGoogle Scholar
  58. Kniesel U, Risau W, Woburg H (1996) Development of blood-brain barrier tight junctions in the rat cortex. Dev Brain Res 96:229–240CrossRefGoogle Scholar
  59. Kuban KC, Gilles FH (1985) Human telencephalic angiogenesis. Ann Neurol 17:539–548PubMedGoogle Scholar
  60. Leonhardt H (1980) Ependym und circumventriculäre Organe. In: Oksche A, Vollrath L (eds) Handbuch der mikroscopischen Anatomie des Menschen, vol IV, chap 10. Springer, Berlin Heidelberg New York, pp 177–666Google Scholar
  61. Lewandowsky M (1890) Zur Lehre der Zerebrospinalflüssigkeit. Z Klin Med 40:480–494Google Scholar
  62. Liebner S, Gerhardt H, Wolburg H (2000) Differential expression of endothelial beta-catenin and plakoglobin during development and maturation of the blood-brain and blood-retina barrier in the chicken. Dev Dyn 271:86–98CrossRefGoogle Scholar
  63. Lindahl P, Johansson BR, Leveen P, Betsholtz C (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277:242–245CrossRefPubMedGoogle Scholar
  64. Martin-Padura I, Lostaglio S, Schneemann M, Williams L, Romano M, Fruscella P, Panzeri C, Stoppacciaro A, Ruco L, Villa A, Simmons D, Dejana E (1998) Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol142:117–127CrossRefGoogle Scholar
  65. McCarty JH, Monahan-Earley RA, Brown LF, Keller M, Gerhardt H, Rubin K, Shani M, Dvorak HF, Wolburg H, Bader BL, Dvorak AM, Hynes RO (2002) Defective associations between blood vessels and brain parenchyma lead to cerebral hemorrhage in mice lacking alphav integrins. Mol Cell Biol 22:7667–7777CrossRefPubMedGoogle Scholar
  66. Meresse S, Dehouck MP, Delorme P, Bensaid M, Tauber JP, Delbart C, Fruchart JC, Cecchelli R (1989) Bovine brain endothelial cells express tight junctions and monoamine oxidase activity in long-term culture. J Neurochem 53:1363–1371PubMedGoogle Scholar
  67. Mollgard K, Dziegielewska KM, Saunders NR, Zakut H, Soreq H (1988) Synthesis and localization of plasma proteins in the developing human brain. Integrity of the fetal blood-brain barrier to endogenous proteins of hepatic origin. Dev Biol 128:207–221PubMedGoogle Scholar
  68. Morita K, Furuse M, Fujimoto K, Tsukita S (1999a) Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands. Proc Natl Acad Sci USA 96:511–516PubMedGoogle Scholar
  69. Morita K, Sasaki H, Furuse M, Tsukita S (1999b) Endothelial claudin: claudin-5/TMVCF constitutes tight junction strands in endothelial cells. J Cell Biol 147:185–194CrossRefPubMedGoogle Scholar
  70. Mühleisen H, Wolburg H, Betz E (1989) Freeze-fracture analysis of endothelial cell membranes in rabbit carotid arteries subjected to short-term atherogenic stimuli. VirchArch [B] Cell Pathol 56:413–417Google Scholar
  71. Nasdala I, Wolburg-Buchholz K, Wolburg H, Kuhn A, Ebnet K, Brachtendorf G, Samulowitz U, Kuster B, Engelhardt B, Vestweber D, Butz S (2002) A transmembrane tight junction protein selectively expressed on endothelial cells and platelets. J Biol Chem 277:16294–16303CrossRefPubMedGoogle Scholar
  72. Noden DM (1991) Development of craniofacial blood vessels. In: Feinberg RN, Sherer GK, Auerbach R (eds) Development of craniofacial blood vessels. Karger, Basel, pp 1–24Google Scholar
  73. Olsson Y, Klatzo I, Sourander P, Steinwall O (1968) Blood-brain barrier to albumin in embryonic new born and adult rats. Acta Neuropathol 10:117–122PubMedGoogle Scholar
  74. Pardridge WM (1988) Recent advances in blood-brain barrier transport. Annu Rev Pharmacol Toxicol 28:25–39CrossRefPubMedGoogle Scholar
  75. Phelps CH (1972) The development of glio-vascular relationships in the rat spinal cord. Z Zellforsch 128:555–563Google Scholar
  76. Qin Y, Sato TN (1995) Mouse multidrug resistance 1a/3 gene is the earliest known endothelial cell differentiation marker during blood-brain barrier development. Dev Dyn 202:172–180PubMedGoogle Scholar
  77. Rascher G, Fischmann A, Kröger S, Duffner F, Grote E-H, Wolburg H (2002) Extracellular matrix and the blood-brain barrier in glioblastoma multiforme: spatial segregation of tenascin and agrin. Acta Neuropathol 104:85–91CrossRefPubMedGoogle Scholar
  78. Reese TS, Karnovsky MJ (1967) Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol 34:207–217PubMedGoogle Scholar
  79. Risau W (1991) Induction of blood-brain barrier endothelial cell differentiation. Ann N Y Acad Sci 633:405–419PubMedGoogle Scholar
  80. Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674PubMedGoogle Scholar
  81. Risau W, Wolburg H (1990) Development of the blood-brain-barrier. Trends Neurosci 13:174–178CrossRefPubMedGoogle Scholar
  82. Risau W, Wolburg H (1991) The importance of the blood-brain-barrier in fetuses and embryos—reply. Trends Neurosci 14:15CrossRefGoogle Scholar
  83. Risau W, Hallmann R, Albrech U (1986a) Differentiation-dependent expression of protein in brain endothelium during development of the blood-brain barrier. Dev Biol 117:537–545PubMedGoogle Scholar
  84. Risau W, Hallmann R, Albrecht U, Henke-Fahle S (1986b) Brain induces the expression of an early cell surface marker for blood-brain barrier specific endothelium. EMBO J 5:3179–3183PubMedGoogle Scholar
  85. Risau W, Gautschi-Sova P, Bohlen P (1988a) Endothelial cell growth factors in embryonic and adult chick brain are related to human acidic fibroblast growth factor. EMBO J 7:959–962PubMedGoogle Scholar
  86. Risau W, Gautschi-Sova P, Böhlen P (1988b) Endothelial cell growth factors in embryonic and adult chick brain are related to human acidic fibroblast growth factors. EMBO J 7:959–962PubMedGoogle Scholar
  87. Robertson PL, Du Bois M, Bowman PD, Goldstein GW (1985) Angiogenesis in developing rat brain: an in vivo and in vitro study. Dev Brain Res 23:219–223CrossRefGoogle Scholar
  88. Roncali L, Nico B, Ribatti D, Bertossi M, Mancini L (1986) Microscopical and ultrastructural investigations on the development of the blood-brain barrier in the chick embryo optic tectum. Acta Neuropathol (Berl) 70:193–201Google Scholar
  89. Rubin LL, Hall DE, Porter S, Barbu K, Cannon C, Horner HC, Janatpour M, Liaw CW, Manning K, Morales J, Tanner LI, Tomaselli KJ, et al (1991) A cell-culture model of the blood-brain-barrier. J Cell Biol 115:1725–1735PubMedGoogle Scholar
  90. Ruhrberg C, Gerhardt H, Golding M, Watson R, Ioannidou S, Fujisawa H, Betsholtz C, Shima DT (2002) Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev 16:2684–2698CrossRefPubMedGoogle Scholar
  91. Saitou M, Furuse M, Sasaki H, Schulzke J-D, Fromm M, Takano H, Noda T, Tsukita S (2000) Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell 22:4131–4142Google Scholar
  92. Saunders NR, Dziegielewska KM, Mollgard K (1991) Letter to the editor: the importance of the blood-brain barrier in fetuses and embryos. Trends Neurosci 14:14–15CrossRefPubMedGoogle Scholar
  93. Schinkel AH, Smit JJM, Tellingen O van, Beijnen JH, Wagenaar E, Deemter L van, Mol CAAM, Walk MA van der, Robanus-Maandag EC, Riele HPJ te, Berns AJM, Borst P (1994) Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 77:491–502PubMedGoogle Scholar
  94. Schnürch H, Risau W (1991) Differentiating and mature neurons express the acidic fibroblast growth factor gene during chick neural development. Development 111:1143–1154PubMedGoogle Scholar
  95. Schulze C, Firth JA (1992) Interendothelial junctions during blood-brain barrier development in the rat: morphological changes at the level of individual tight junctional contacts. Dev Brain Res 10:1–11Google Scholar
  96. Schulze C, Firth JA (1993) Immunohistochemical localization of adherens junction components in blood-brain-barrier microvessels of the rat. J Cell Sci 104:773–782PubMedGoogle Scholar
  97. Seulberger H, Unger CM, Risau W (1992) HT7, Neurothelin, Basigin, gp42 and OX-47—many names for one developmentally regulated immuno-globulin-like surface glycoprotein on blood-brain barrier endothelium, epithelial tissue barriers and neurons. Neurosci Lett 140:93–97CrossRefPubMedGoogle Scholar
  98. Simionescu M, Ghinea N, Fixman A, Lasser M, Kukes L, Simionescu N, Palade GE (1988) The cerebral microvasculature of the rat: structure and luminal surface properties during early development. J Submicrosc Cytol 20:243–261Google Scholar
  99. Sims DE (1986) The pericyte—a review. Tissue Cell 18:153–174PubMedGoogle Scholar
  100. Small RK, Watkins BA, Munro PM, Liu D (1993) Functional properties of retinal Muller cells following transplantation to the anterior eye chamber. Glia 7:158–169PubMedGoogle Scholar
  101. Stan RV, Ghitescu L, Jacobson BS, Palade GE (1999) Isolation, cloning, and localization of rat PV-1, a novel endothelial caveolar protein. J Cell Biol 145:1189–1198CrossRefPubMedGoogle Scholar
  102. Stewart PA (2000) Development of the blood-brain barrier. In Risau W, Rubanyi GM (eds), Development of the blood-brain barrier. Harwood, Amsterdam, pp 109–122Google Scholar
  103. Stewart PA, Hayakawa EM (1987) Interendothelial junctional changes underlie the developmental "tightening" of the blood-brain barrier. Dev Brain Res 32:271–281CrossRefGoogle Scholar
  104. Stewart PA, Hayakawa EM (1994) Early ultrastructural changes in blood-brain barrier vessels of the rat embryo. Dev Brain Res 78:25–34CrossRefGoogle Scholar
  105. Stewart PA, Wiley MJ (1981) Developing nervous tissue induces formation of blood-brain barrier characteristics in invading endothelial cells: a study using quail-chick transplantation chimeras. Dev Biol 84:183–192PubMedGoogle Scholar
  106. Stewart PA, Beliveau R, Rogers KA (1996) Cellular localization of P-glycoprotein in brain versus gonadal capillaries. J Histochem Cytochem 44:679–685PubMedGoogle Scholar
  107. Stonestreet BS, Patlak CS, Pettigrew KD, Reilly CB, Cserr HF (1996) Ontogeny of blood-brain barrier function in ovine fetuses, lambs, and adults. Am J Physiol 271:R1594–R1601PubMedGoogle Scholar
  108. Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, Sato TN, Yancopoulos GD (1996) Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87:1171–1180PubMedGoogle Scholar
  109. Tsukita S, Furuse M, Itoh M (1999) Structural and signalling molecules come together at tight junctions. Curr Opin Cell Biol 11:628–633PubMedGoogle Scholar
  110. Tuor UI, Simone C, Bascaramurty S (1992) Local blood-brain barrier in the newborn rabbit: postnatal changes in alpha-aminoisobutyric acid transfer within medulla, cortex, and selected brain areas. J Neurochem 59:999–1007PubMedGoogle Scholar
  111. Vleminckx K, Kemler R (1999) Cadherins and tissue formation: integrating adhesion adn signaling. Bioessays 21:211–220CrossRefPubMedGoogle Scholar
  112. Wakai S, Hirokawa N (1978) Development of the blood-brain barrier to horseradish peroxidase in the chick embryo. Cell Tissue Res 195:195–203PubMedGoogle Scholar
  113. Wolburg H, Lippoldt A (2002) Tight junctions of the blood-brain barrier: development, composition and regulation. Vasc Pharmacol 28:323–337CrossRefGoogle Scholar
  114. Wolburg H, Neuhaus J, Kniesel U, Krauss B, Schmid EM, Ocalan M, Farrell C, Risau W (1994) Modulation of tight junction structure in blood-brain-barrier endothelial-cells—effects of tissue-culture, 2nd messengers and cocultured astrocytes. J Cell Sci 107:1347–1357PubMedGoogle Scholar
  115. Wolburg H, Wolburg-Buchholz K, Kraus J, Rascher-Eggstein G, Liebner S, Hamm S, Duffner F, Grote E-H, Risau W, Engelhardt B (2003) Localization of claudin-3 in tight junctions of the blood-brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme. Acta Neuropathol 105:586–592Google Scholar
  116. Zhu J, Motejlek K, Wang D, Zang K, Schmidt A, Reichardt LF (2002) Abstract beta8 integrins are required for vascular morphogenesis in mouse embryos. Development 129:2891–2903PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Max Planck Institute for Vascular BiologyMünsterGermany

Personalised recommendations