Advertisement

Algorithmic Pirogov–Sinai theory

  • Tyler HelmuthEmail author
  • Will Perkins
  • Guus Regts
Article
  • 95 Downloads

Abstract

We develop an efficient algorithmic approach for approximate counting and sampling in the low-temperature regime of a broad class of statistical physics models on finite subsets of the lattice \(\mathbb {Z}^d\) and on the torus \((\mathbb {Z}/n\mathbb {Z})^d\). Our approach is based on combining contour representations from Pirogov–Sinai theory with Barvinok’s approach to approximate counting using truncated Taylor series. Some consequences of our main results include an FPTAS for approximating the partition function of the hard-core model at sufficiently high fugacity on subsets of \(\mathbb {Z}^d\) with appropriate boundary conditions and an efficient sampling algorithm for the ferromagnetic Potts model on the discrete torus \((\mathbb {Z}/n\mathbb {Z})^d\) at sufficiently low temperature.

Keywords

Approximate sampling Approximation algorithms FPTAS Discrete spin systems Pirogov–Sinai theory Cluster expansion 

Mathematics Subject Classification

82B20 68W25 60K35 

Notes

Acknowledgements

WP and GR thank Ivona Bezáková, Leslie Goldberg, and Mark Jerrum for organizing the 2017 Dagstuhl seminar on computational counting and Jan Hladkỳ for organizing the 2018 workshop on graph limits in Bohemian Switzerland. Both meetings provided essential inspiration and discussion leading to this work. TH thanks Roman Kotecký for helpful discussions. We thank Eric Vigoda, Matthew Jenssen, and Reza Gheissari for detailed comments on a draft of the paper. We are moreover grateful to the anonymous referees for their helpful suggestions.

References

  1. 1.
    Adams, S., Briceño, R., Marcus, B., Pavlov, R.: Representation and poly-time approximation for pressure of \(\mathbb{Z}^2\) lattice models in the non-uniqueness region. J. Stat. Phys. 162(4), 1031–1067 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Barvinok, A.: Computing the partition function for cliques in a graph. Theory Comput. 11(13), 339–355 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Barvinok, A.: Computing the permanent of (some) complex matrices. Found. Comput. Math. 16(2), 329–342 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Barvinok, A.: Combinatorics and complexity of partition functions. vol. 276, Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-51829-9
  5. 5.
    Barvinok, A., Regts, G.: Weighted counting of solutions to sparse systems of equations. Comb. Probab. Comput (2019).  https://doi.org/10.1017/S0963548319000105
  6. 6.
    Barvinok, A., Soberón, P.: Computing the partition function for graph homomorphisms with multiplicities. J. Comb. Theory Ser. A 137, 1–26 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Baxter, R.J.: Hard hexagons: exact solution. J. Phys. A Math. Gen. 13(3), L61 (1980)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Beyer, T., Hedetniemi, S.M.: Constant time generation of rooted trees. SIAM J. Comput. 9(4), 706–712 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Bezáková, I., Galanis, A., Goldberg, L.A., Štefankovič, D.: Inapproximability of the independent set polynomial in the complex plane. In: Proceedings of the Fiftieth Annual ACM Symposium on Theory of Computing, STOC 2018, pp. 1234–1240. ACM (2018)Google Scholar
  10. 10.
    Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Computing the Tutte polynomial in vertex-exponential time. In: Proceedings of the Forty-ninth Annual Symposium on Foundations of Computer Science, FOCS 2008, pp. 677–686. IEEE (2008)Google Scholar
  11. 11.
    Blanca, A., Chen, Y., Galvin, D., Randall, D., Tetali, P.: Phase coexistence for the hard-core model on \(\mathbb{Z}^2\). Comb. Probab. Comput. 28(1), 1–22 (2019)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Blanca, A., Sinclair, A.: Random-cluster dynamics in \(\mathbb{Z}^2\). Probab. Theory Relat. Fields 168(3–4), 821–847 (2017)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Borgs, C., Chayes, J., Kahn, J., Lovász, L.: Left and right convergence of graphs with bounded degree. Random Struct. Algorithms 42(1), 1–28 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Borgs, C., Chayes, J.T., Dyer, M., Tetali, P.: On the sampling problem for H-colorings on the hypercubic lattice. In: Graphs, Morphisms, and Statistical Physics: DIMACS Workshop Graphs, Morphisms and Statistical Physics, March 19–21, 2001, DIMACS Center, vol. 63, p. 13. American Mathematical Soc. (2004)Google Scholar
  15. 15.
    Borgs, C., Chayes, J.T., Frieze, A., Kim, J.H., Tetali, P., Vigoda, E., Vu, V.H.: Torpid mixing of some Monte Carlo Markov chain algorithms in statistical physics. In: Proceedings of the Fourtieth Annual Symposium on Foundations of Computer Science, FOCS 1999, pp. 218–229. IEEE (1999)Google Scholar
  16. 16.
    Borgs, C., Chayes, J.T., Tetali, P.: Tight bounds for mixing of the Swendsen–Wang algorithm at the Potts transition point. Probab. Theory Relat. Fields 152(3–4), 509–557 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Borgs, C., Imbrie, J.Z.: A unified approach to phase diagrams in field theory and statistical mechanics. Commun. Math. Phys. 123(2), 305–328 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Borgs, C., Kotecký, R., Miracle-Solé, S.: Finite-size scaling for Potts models. J. Stat. Phys. 62(3–4), 529–551 (1991)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Cai, J.Y., Galanis, A., Goldberg, L.A., Guo, H., Jerrum, M., Štefankovič, D., Vigoda, E.: # BIS-hardness for 2-spin systems on bipartite bounded degree graphs in the tree non-uniqueness region. J. Comput. Syst. Sci. 82(5), 690–711 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Dobrushin, R.: Estimates of semi-invariants for the Ising model at low temperatures. Transl. Am. Math. Soc. Ser. 2(177), 59–82 (1996)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Dyer, M., Goldberg, L.A., Greenhill, C., Jerrum, M.: The relative complexity of approximate counting problems. Algorithmica 38(3), 471–500 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Fernández, R., Procacci, A.: Cluster expansion for abstract polymer models. New bounds from an old approach. Commun. Math. Phys. 274(1), 123–140 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Friedli, S., Velenik, Y.: Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction. Cambridge University Press, Cambridge (2017)zbMATHCrossRefGoogle Scholar
  24. 24.
    Galanis, A., Štefankovič, D., Vigoda, E.: Inapproximability of the partition function for the antiferromagnetic Ising and hard-core models. Comb. Probab. Comput. 25(4), 500–559 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Galanis, A., Stefankovic, D., Vigoda, E., Yang, L.: Ferromagnetic Potts model: refined #-BIS-hardness and related results. SIAM J. Comput. 45(6), 2004–2065 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Galvin, D., Kahn, J.: On phase transition in the hard-core model on \(\mathbb{Z}^d\). Combin. Probab. Comput. 13(2), 137–164 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Gamarnik, D., Katz, D.: Sequential cavity method for computing free energy and surface pressure. J. Stat. Phys. 137(2), 205–232 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Gheissari, R., Lubetzky, E.: Mixing times of critical two-dimensional Potts models. Commun. Pure Appl. Math. 71(5), 994–1046 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Goldberg, L.A., Jerrum, M.: Approximating the partition function of the ferromagnetic Potts model. J. ACM 59(5), 25 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Grimmett, G.R.: The Random-Cluster Model, 2nd edn. Springer, Berlin (2006)zbMATHCrossRefGoogle Scholar
  31. 31.
    Guo, H., Jerrum, M.: Random cluster dynamics for the Ising model is rapidly mixing. Ann. Appl. Probab. 28(2), 1292–1313 (2018).  https://doi.org/10.1214/17-AAP1335 MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Harvey, N.J., Srivastava, P., Vondrák, J.: Computing the independence polynomial: from the tree threshold down to the roots. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1557–1576. SIAM (2018)Google Scholar
  33. 33.
    Jauslin, I., Lebowitz, J.L.: High-fugacity expansion and crystalline ordering for non-sliding hard-core lattice particle systems. (2017) arXiv preprint arXiv:1708.01912
  34. 34.
    Jenssen, M., Keevash, P., Perkins, W.: Algorithms for #BIS-hard problems on expander graphs. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 2235–2247 (2019) Full version available at arXiv:1807.04804
  35. 35.
    Jerrum, M., Sinclair, A.: Polynomial-time approximation algorithms for the Ising model. SIAM J. Comput. 22(5), 1087–1116 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Jerrum, M.R., Valiant, L.G., Vazirani, V.V.: Random generation of combinatorial structures from a uniform distribution. Theor. Comput. Sci. 43, 169–188 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Joyce, G.: On the hard-hexagon model and the theory of modular functions. Phil. Trans. R. Soc. Lond. A 325(1588), 643–702 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Kotecký, R., Preiss, D.: Cluster expansion for abstract polymer models. Commun. Math. Phys. 103(3), 491–498 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Laanait, L., Messager, A., Miracle-Solé, S., Ruiz, J., Shlosman, S.: Interfaces in the Potts model I: Pirogov–Sinai theory of the Fortuin–Kasteleyn representation. Commun. Math. Phys. 140(1), 81–91 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Lee, T.D., Yang, C.N.: Statistical theory of equations of state and phase transitions. II. Lattice gas and Ising model. Phys. Rev. 87(3), 410 (1952)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Liu, J., Lu, P.: FPTAS for #BIS with degree bounds on one side. In: Proceedings of the Forty-seventh Annual ACM Symposium on Theory of Computing, STOC 2015, pp. 549–556. ACM (2015)Google Scholar
  42. 42.
    Liu, J., Sinclair, A., Srivastava, P.: The Ising partition function: Zeros and deterministic approximation. J. Stat. Phys. 174, 287–315 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Lubetzky, E., Martinelli, F., Sly, A., Toninelli, F.L.: Quasi-polynomial mixing of the 2D stochastic Ising model with “plus” boundary up to criticality. J. Eur. Math. Soc. 15, 339 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Otter, R.: The number of trees. Ann. Math. 49, 583–599 (1948)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Patel, V., Regts, G.: Computing the number of induced copies of a fixed graph in a bounded degree graph. Algorithmica 81(5), 1844–1858 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Patel, V., Regts, G.: Deterministic polynomial-time approximation algorithms for partition functions and graph polynomials. SIAM J. Comput. 46(6), 1893–1919 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Peled, R., Samotij, W.: Odd cutsets and the hard-core model on \(\mathbb{Z}^d\). Annales de l’Institut Henri Poincaré, Probabilités et Statistiques 50(3), 975–998 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  48. 48.
    Peters, H., Regts, G.: On a conjecture of Sokal concerning roots of the independence polynomial. Michigan Math. J. 68(1), 33–55 (2019)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Pirogov, S.A., Sinai, Y.G.: Phase diagrams of classical lattice systems. Theor. Math. Phys. 25(3), 1185–1192 (1975)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Pirogov, S.A., Sinai, Y.G.: Phase diagrams of classical lattice systems continuation. Theor. Math. Phys. 26(1), 39–49 (1976)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Randall, D.: Slow mixing of Glauber dynamics via topological obstructions. In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2006, pp. 870–879. Society for Industrial and Applied Mathematics (2006)Google Scholar
  52. 52.
    Randall, D., Wilson, D.: Sampling spin configurations of an ising system. In: Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 1999, pp. 959–960. Society for Industrial and Applied Mathematics (1999)Google Scholar
  53. 53.
    Scott, A.D., Sokal, A.D.: The repulsive lattice gas, the independent-set polynomial, and the Lovász local lemma. J. Stat. Phys. 118(5–6), 1151–1261 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Shearer, J.B.: On a problem of Spencer. Combinatorica 5(3), 241–245 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Sinclair, A., Jerrum, M.: Approximate counting, uniform generation and rapidly mixing Markov chains. Inf. Comput. 82(1), 93–133 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Sly, A.: Computational transition at the uniqueness threshold. In: Proceedings of the Fifty-first Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010, pp. 287–296. IEEE (2010)Google Scholar
  57. 57.
    Sly, A., Sun, N.: Counting in two-spin models on d-regular graphs. Ann. Probab. 42(6), 2383–2416 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    Timár, Á.: Boundary-connectivity via graph theory. Proc. Am. Math. Soc. 141(2), 475–480 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    Tracy, C.A., Grove, L., Newman, M.: Modular properties of the hard hexagon model. J. Stat. Phys. 48(3–4), 477–502 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Ullrich, M.: Rapid mixing of Swendsen–Wang dynamics in two dimensions. Diss. Math. 502, 1–64 (2014)MathSciNetzbMATHGoogle Scholar
  61. 61.
    Weitz, D.: Counting independent sets up to the tree threshold. In: Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory of Computing, STOC 2006, pp. 140–149. ACM (2006)Google Scholar
  62. 62.
    Zahradník, M.: An alternate version of Pirogov–Sinai theory. Commun. Math. Phys. 93(4), 559–581 (1984)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University of BristolBristolUK
  2. 2.University of Illinois at ChicagoChicagoUSA
  3. 3.University of AmsterdamAmsterdamThe Netherlands

Personalised recommendations