Advertisement

Cones generated by random points on half-spheres and convex hulls of Poisson point processes

  • Zakhar Kabluchko
  • Alexander MarynychEmail author
  • Daniel Temesvari
  • Christoph Thäle
Article
  • 10 Downloads

Abstract

Let \(U_1,U_2,\ldots \) be random points sampled uniformly and independently from the d-dimensional upper half-sphere. We show that, as \(n\rightarrow \infty \), the f-vector of the \((d+1)\)-dimensional convex cone \(C_n\) generated by \(U_1,\ldots ,U_n\) weakly converges to a certain limiting random vector, without any normalization. We also show convergence of all moments of the f-vector of \(C_n\) and identify the limiting constants for the expectations. We prove that the expected Grassmann angles of \(C_n\) can be expressed through the expected f-vector. This yields convergence of expected Grassmann angles and conic intrinsic volumes and answers thereby a question of Bárány et al. (Random Struct Algorithms 50(1):3–22, 2017.  https://doi.org/10.1002/rsa.20644). Our approach is based on the observation that the random cone \(C_n\) weakly converges, after a suitable rescaling, to a random cone whose intersection with the tangent hyperplane of the half-sphere at its north pole is the convex hull of the Poisson point process with power-law intensity function proportional to \(\Vert x\Vert ^{-(d+\gamma )}\), where \(\gamma =1\). We compute the expected number of facets, the expected intrinsic volumes and the expected T-functional of this random convex hull for arbitrary \(\gamma >0\).

Keywords

Blaschke–Petkantschin formula Conic intrinsic volume Convex cone Convex hull f-Vector Random polytope Poisson point process Spherical integral geometry 

Mathematics Subject Classification

Primary 52A22 60D05 Secondary 52A55 52B11 60F05 

Notes

Acknowledgements

We would like to that the referee, whose comments helped us to improved our text. The work of AM was supported by the return fellowship of the Alexander von Humboldt foundation. DT was supported by the Deutsche Forschungsgemeinschaft (DFG) via RTG 2131 High-Dimensional Phenomena in Probability—Fluctuations and Discontinuity. ZK and CT were supported by the DFG Scientific Network Cumulants, Concentration and Superconcentration.

References

  1. 1.
    Amelunxen, D., Lotz, M.: Intrinsic volumes of polyhedral cones: a combinatorial perspective. Discrete Comput. Geom. 58(2), 371–409 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Amelunxen, D., Lotz, M., McCoy, M., Tropp, J.: Living on the edge: phase transitions in convex programs with random data. Inf. Inference 3, 224–294 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Axler, S., Bourdon, P., Ramey, W.: Harmonic Function Theory, Volume 137 of Graduate Texts in Mathematics. Springer, New York (1992).  https://doi.org/10.1007/b97238 CrossRefzbMATHGoogle Scholar
  4. 4.
    Bárány, I.: Intrinsic volumes and \(f\)-vectors of random polytopes. Math. Ann. 285(4), 671–699 (1989).  https://doi.org/10.1007/BF01452053 MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bárány, I., Hug, D., Reitzner, M., Schneider, R.: Random points in halfspheres. Random Struct. Algorithms 50(1), 3–22 (2017).  https://doi.org/10.1002/rsa.20644 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Besau, F., Werner, E.M.: The spherical convex floating body. Adv. Math. 301, 867–901 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bonnet, G., Grote, J., Temesvari, D., Thäle, C., Turchi, N., Wespi, F.: Monotonicity of facet numbers of random convex hulls. J. Math. Anal. Appl. 455(2), 1351–1364 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Buchta, C.: An identity relating moments of functionals of convex hulls. Discrete Comput. Geom. 33(1), 125–142 (2005).  https://doi.org/10.1007/s00454-004-1109-3 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Carnal, H.: Die konvexe Hülle von n rotations-symmetrisch verteilten Punkten. Z. Wahrscheinlichkeitstheor. Verw. Geb. 15, 168–176 (1970).  https://doi.org/10.1007/BF00531885 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Cover, T.M., Efron, B.: Geometrical probability and random points on a hypersphere. Ann. Math. Stat. 38, 213–220 (1967).  https://doi.org/10.1214/aoms/1177699073 MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Davis, R., Mulrow, E., Resnick, S.: The convex hull of a random sample in \({{ R}}^2\). Commun. Stat. Stoch. Models 3(1), 1–27 (1987)CrossRefzbMATHGoogle Scholar
  12. 12.
    Efron, B.: The convex hull of a random set of points. Biometrika 52, 331–343 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Glasauer, S.: Integralgeometrie konvexer Körper im sphärischen Raum. Ph.D. Thesis, University of Freiburg. http://www.hs-augsburg.de/~glasauer/publ/diss.pdf (1995). Accessed 25 Mar 2019
  14. 14.
    Grünbaum, B.: Grassmann angles of convex polytopes. Acta Math. 121, 293–302 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Hörrmann, J., Hug, D., Reitzner, M., Thäle, C.: Poisson polyhedra in high dimensions. Adv. Math. 281, 1–39 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hug, D.: Random polytopes. In: Stochastic Geometry, Spatial Statistics and Random Fields. Asymptotic Methods. Selected papers based on the presentations at the summer academy on stochastic geometry, spatial statistics and random fields, Söllerhaus, September 13–26, 2009, pp. 205–238. Springer, Berlin (2013).  https://doi.org/10.1007/978-3-642-33305-7_7
  17. 17.
    Hug, D., Schneider, R.: Random conical tessellations. Discrete Comput. Geom. 56(2), 395–426 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kabluchko, Z., Temesvari, D., Thäle, C.: Expected intrinsic volumes and facet numbers of random beta-polytopes. Math. Nachr. 292, 79–105 (2019)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kallenberg, O.: Random Measures. Akademie-Verlag, Berlin; Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 3rd edn. (1983)Google Scholar
  20. 20.
    Kallenberg, O.: Foundations of Modern Probability. Probability and Its Applications, 2nd edn. Springer, New York (2002)CrossRefzbMATHGoogle Scholar
  21. 21.
    Majumdar, S.N., Comtet, A., Randon-Furling, J.: Random convex hulls and extreme value statistics. J. Stat. Phys. 138(6), 955–1009 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Miles, R.E.: Isotropic random simplices. Adv. Appl. Probab. 3, 353–382 (1971).  https://doi.org/10.2307/1426176 MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Molchanov, I.: Theory of Random Sets. Probability and Its Applications. Springer, London (2005)Google Scholar
  24. 24.
    Reitzner, M.: The combinatorial structure of random polytopes. Adv. Math. 191(1), 178–208 (2005).  https://doi.org/10.1016/j.aim.2004.03.006 MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Rényi, A., Sulanke, R.: Über die konvexe Hülle von \(n\) zufällig gewählten Punkten. Z. Wahrscheinlichkeitstheor. Verw. Geb. 2, 75–84 (1963).  https://doi.org/10.1007/BF00535300 CrossRefzbMATHGoogle Scholar
  26. 26.
    Rényi, A., Sulanke, R.: Über die konvexe Hülle von \(n\) zufällig gewählten Punkten. II. Z. Wahrscheinlichkeitstheor. Verw. Geb. 3, 138–147 (1964).  https://doi.org/10.1007/BF00535973 CrossRefzbMATHGoogle Scholar
  27. 27.
    Resnick, S.: Extreme Values, Regular Variation, and Point Processes, Volume 4 of Applied Probability. Springer, New York (1987)CrossRefGoogle Scholar
  28. 28.
    Rogers, L.C.G.: The probability that two samples in the plane will have disjoint convex hulls. J. Appl. Probab. 15, 790–802 (1978).  https://doi.org/10.2307/3213434 MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Schneider, R.: Recent results on random polytopes. Boll. Unione Mat. Ital. (9) 1(1), 17–39 (2008)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Schneider, R.: Weighted faces of Poisson hyperplane tessellations. Adv. Appl. Probab. 41(3), 682–694 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory, Volume 151 of Encyclopedia of Mathematics and Its Applications, expanded edition. Cambridge University Press, Cambridge (2014)Google Scholar
  32. 32.
    Schneider, R., Weil, W.: Stochastic and Integral Geometry. Probability and Its Applications. Springer, Berlin (2008)CrossRefzbMATHGoogle Scholar
  33. 33.
    Schütt, C.: Random polytopes and affine surface area. Math. Nachr. 170, 227–249 (1994).  https://doi.org/10.1002/mana.19941700117 MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Wieacker, J.A.: Einige Probleme der polyedrischen Approximation. Diploma Thesis, University of Freiburg (1978)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für Mathematische StochastikWestfälische Wilhelms-Universität MünsterMünsterGermany
  2. 2.Faculty of Computer Science and CyberneticsTaras Shevchenko National University of KyivKyivUkraine
  3. 3.Fakultät für MathematikRuhr-Universität BochumBochumGermany

Personalised recommendations