Probability Theory and Related Fields

, Volume 174, Issue 1–2, pp 235–305

# The Z-invariant Ising model via dimers

Article

## Abstract

The Z-invariant Ising model (Baxter in Philos Trans R Soc Lond A Math Phys Eng Sci 289(1359):315–346, 1978) is defined on an isoradial graph and has coupling constants depending on an elliptic parameter k. When $$k=0$$ the model is critical, and as k varies the whole range of temperatures is covered. In this paper we study the corresponding dimer model on the Fisher graph, thus extending our papers (Boutillier and de Tilière in Probab Theory Relat Fields 147:379–413, 2010; Commun Math Phys 301(2):473–516, 2011) to the fullZ-invariant case. One of our main results is an explicit, local formula for the inverse of the Kasteleyn operator. Its most remarkable feature is that it is an elliptic generalization of Boutillier and de Tilière (2011): it involves a local function and the massive discrete exponential function introduced in Boutillier et al. (Invent Math 208(1):109–189, 2017). This shows in particular that Z-invariance, and not criticality, is at the heart of obtaining local expressions. We then compute asymptotics and deduce an explicit, local expression for a natural Gibbs measure. We prove a local formula for the Ising model free energy. We also prove that this free energy is equal, up to constants, to that of the Z-invariant spanning forests of Boutillier et al.  (2017), and deduce that the two models have the same second order phase transition in k. Next, we prove a self-duality relation for this model, extending a result of Baxter to all isoradial graphs. In the last part we prove explicit, local expressions for the dimer model on a bipartite graph corresponding to the XOR version of this Z-invariant Ising model.

82B20

## References

1. 1.
Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. National Bureau of Standards Applied Mathematics Series, vol. 55. U.S. Government Printing Office, Washington, DC (1964)Google Scholar
2. 2.
Au-Yang, H., Perk, J.H.H.: Q-dependent susceptibilities in ferromagnetic quasiperiodic $$Z$$-invariant ising models. J. Stat. Phys. 127, 265–286 (2007)
3. 3.
Baxter, R.J.: Solvable eight-vertex model on an arbitrary planar lattice. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 289(1359), 315–346 (1978)
4. 4.
Baxter, R.J.: Free-fermion, checkerboard and $${Z}$$-invariant lattice models in statistical mechanics. Proc. R. Soc. Lond. Ser. A 404(1826), 1–33 (1986)
5. 5.
Baxter, R.J.: Exactly solved models in statistical mechanics. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London, 1989. Reprint of the 1982 originalGoogle Scholar
6. 6.
Bostan, A., Boukraa, S., Hassani, S., van Hoeij, M., Maillard, J.-M., Weil, J.-A., Zenine, N.: The Ising model: from elliptic curves to modular forms and Calabi-Yau equations. J. Phys. A 44(4), 045204, 44 (2011)
7. 7.
Boutillier, C., de Tilière, B.: The critical $$Z$$-invariant Ising model via dimers: the periodic case. Probab. Theory Relat. Fields 147, 379–413 (2010)
8. 8.
Boutillier, C., de Tilière, B.: The critical $$Z$$-invariant Ising model via dimers: locality property. Commun. Math. Phys. 301(2), 473–516 (2011)
9. 9.
Boutillier, C., de Tilière, B.: Height representation of XOR-Ising loops via bipartite dimers. Electron. J. Probab. 19(80), 33 (2014)
10. 10.
Boutillier, C., de Tilière, B., Raschel, K.: The $$Z$$-invariant massive Laplacian on isoradial graphs. Invent. Math. 208(1), 109–189 (2017)
11. 11.
Chan, Y., Guttmann, A.J., Nickel, B.G., Perk, J.H.H.: The Ising susceptibility scaling function. J. Stat. Phys. 145(3), 549–590 (2011)
12. 12.
Chelkak, D., Smirnov, S.: Universality in the 2D Ising model and conformal invariance of fermionic observables. Inv. Math. 189, 515–580 (2012)
13. 13.
Cimasoni, D., Duminil-Copin, H.: The critical temperature for the Ising model on planar doubly periodic graphs. Electron. J. Probab. 18(44), 1–18 (2013)
14. 14.
Cimasoni, D., Reshetikhin, N.: Dimers on surface graphs and spin structures. I. Commun. Math. Phys. 275(1), 187–208 (2007)
15. 15.
Cohn, H., Kenyon, R., Propp, J.: A variational principle for domino tilings. J. Am. Math. Soc. 14(2), 297–346 (2001). (electronic)
16. 16.
Costa-Santos, R.: Geometrical aspects of the $$Z$$-invariant Ising model. EPJ B 53(1), 85–90 (2006)
17. 17.
de Tilière, B.: Quadri-tilings of the plane. Probab. Theory Relat. Fields 137(3–4), 487–518 (2007)
18. 18.
de Tilière, B.: Critical Ising model and spanning trees partition functions. Ann. Inst. Henri Poincaré Probab. Stat. 52(3), 1382–1405 (2016)
19. 19.
Dubédat, J.: Exact bosonization of the Ising model, pp. 1–35 (2011). arXiv:1112.4399
20. 20.
Duffin, R.J.: Potential theory on a rhombic lattice. J. Comb. Theory 5, 258–272 (1968)
21. 21.
Duminil-Copin, H., Hongler, C., Nolin, P.: Connection probabilities and RSW-type bounds for the two-dimensional FK Ising model. Commun. Pure Appl. Math. 64(9), 1165–1198 (2011)
22. 22.
Duminil-Copin, H., Li, J., Manolescu, I.: Universality for the random-cluster model on isoradial graphs (2017). arXiv:1711.02338
23. 23.
Fan, C., Wu, F.Y.: General lattice model of phase transitions. Phys. Rev. B 2, 723–733 (1970)
24. 24.
Fisher, M.E.: On the dimer solution of planar Ising models. J. Math. Phys. 7, 1776–1781 (1966)
25. 25.
Grimmett, G.R., Manolescu, I.: Universality for bond percolation in two dimensions. Ann. Probab. 41(5), 3261–3283 (2013)
26. 26.
Kadanoff, L.P., Brown, A.C.: Correlation functions on the critical lines of the Baxter and Ashkin-Teller models. Ann. Phys. 121(1–2), 318–342 (1979)
27. 27.
Kadanoff, L.P., Wegner, F.J.: Some critical properties of the eight-vertex model. Phys. Rev. B 4, 3989–3993 (1971)
28. 28.
Kasteleyn, P.W.: The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice. Physica 27, 1209–1225 (1961)
29. 29.
Kasteleyn, P.W.: Graph theory and crystal physics. In: Graph Theory and Theoretical Physics. Academic Press, London, pp. 43–110 (1967)Google Scholar
30. 30.
Kennelly, A.E.: The equivalence of triangles and three-pointed stars in conducting networks. Electr. World Eng. 34, 413–414 (1899)Google Scholar
31. 31.
Kenyon, R.: The Laplacian and Dirac operators on critical planar graphs. Invent. Math. 150(2), 409–439 (2002)
32. 32.
Kenyon, R.: An introduction to the dimer model. In: School and Conference on Probability Theory, ICTP Lect. Notes, XVII. Abdus Salam Int. Cent. Theoret. Phys., Trieste, pp. 267–304 (2004) (electronic)Google Scholar
33. 33.
Kenyon, R., Okounkov, A.: Planar dimers and harnack curves. Duke Math. J. 131(3), 499–524 (2006)
34. 34.
Kenyon, R., Okounkov, A., Sheffield, S.: Dimers and amoebae. Ann. Math. (2) 163(3), 1019–1056 (2006)
35. 35.
Kenyon, R., Schlenker, J.-M.: Rhombic embeddings of planar quad-graphs. Trans. Am. Math. Soc. 357(9), 3443–3458 (2005). (electronic)
36. 36.
Kramers, H.A., Wannier, G.H.: Statistics of the two-dimensional ferromagnet. Part I. Phys. Rev. 60(3), 252–262 (1941)
37. 37.
Kramers, H.A., Wannier, G.H.: Statistics of the two-dimensional ferromagnet. Part II. Phys. Rev. 60(3), 263–276 (1941)
38. 38.
Krieger, M.H.: Constitutions of matter. University of Chicago Press, Chicago, IL (1996). Mathematically modeling the most everyday of physical phenomenaGoogle Scholar
39. 39.
Kuperberg, G.: An exploration of the permanent-determinant method. Electron. J. Comb. 5(1), R46 (1998)
40. 40.
Lawden, D.F.: Elliptic functions and applications. Applied Mathematical Sciences, vol. 80. Springer, New York (1989)Google Scholar
41. 41.
Li, Z.: Critical temperature of periodic Ising models. Commun. Math. Phys. 315, 337–381 (2012)
42. 42.
Lis, M.: Phase transition free regions in the Ising model via the Kac-Ward operator. Commun. Math. Phys. 331(3), 1071–1086 (2014)
43. 43.
Maillard, J.-M., Boukraa, S.: Modular invariance in lattice statistical mechanics. Ann. Fond. Louis de Broglie 26(Special Issue 2), 287–328 (2001)
44. 44.
Martìnez, J.R.R.: Correlation functions for the $$Z$$-invariant Ising model. Phys. Lett. A 227(3–4), 203–208 (1997)
45. 45.
Martìnez, J.R.R.: Multi-spin correlation functions for the $$Z$$-invariant Ising model. Physica A 256(3–4), 463–484 (1998)
46. 46.
McCoy, B., Wu, F.: The Two-Dimensional Ising Model. Harvard Univ. Press, Cambridge (1973)
47. 47.
McCoy, B.M., Maillard, J.M.: The anisotropic Ising correlations as elliptic integrals: duality and differential equations. J. Phys. A 49(43), 434004 (2016)
48. 48.
Mercat, C.: Discrete Riemann surfaces and the Ising model. Commun. Math. Phys. 218(1), 177–216 (2001)
49. 49.
Mercat, C.: Exponentials form a basis of discrete holomorphic functions on a compact. Bull. Soc. Math. France 132(2), 305–326 (2004)
50. 50.
Nienhuis, B.: Critical behavior of two-dimensional spin models and charge asymmetry in the Coulomb gas. J. Stat. Phys. 34(5–6), 731–761 (1984)
51. 51.
Onsager, L.: Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65(3–4), 117–149 (1944)
52. 52.
Perk, J.H.H., Au-Yang, H.: Yang Baxter equations. In: Françoise, J.-P., Naber, G.L., Tsun, T.S. (eds.) Encyclopedia of Mathematical Physics, pp. 465–473. Academic Press, Oxford (2006)
53. 53.
Temperley, H.N.V., Fisher, M.E.: Dimer problem in statistical mechanics-an exact result. Philos. Mag. 6(68), 1061–1063 (1961)
54. 54.
Wannier, G.H.: The statistical problem in cooperative phenomena. Rev. Mod. Phys. 17(1), 50–60 (1945)
55. 55.
Wilson, D.B.: XOR-Ising loops and the Gaussian free field (2011). arXiv: 1102.3782
56. 56.
Wu, F.W.: Ising model with four-spin interactions. Phys. Rev. B 4, 2312–2314 (1971)
57. 57.
Wu, F.Y., Lin, K.Y.: Staggered ice-rule vertex model—the Pfaffian solution. Phys. Rev. B 12, 419–428 (1975)

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

## Authors and Affiliations

• Cédric Boutillier
• 1
Email author
• Béatrice de Tilière
• 2
• Kilian Raschel
• 3
1. 1.Laboratoire de Probabilités, Statistique et ModélisationSorbonne UniversitéParisFrance
2. 2.Laboratoire d’Analyse et de Mathématiques AppliquéesUniversité Paris-Est CréteilCréteilFrance
3. 3.CNRS, Institut Denis PoissonUniversité de ToursToursFrance