Probability Theory and Related Fields

, Volume 172, Issue 3–4, pp 615–662

# On Brownian motion, simple paths, and loops

Article

## Abstract

We provide a decomposition of the trace of the Brownian motion into a simple path and an independent Brownian soup of loops that intersect the simple path. More precisely, we prove that any subsequential scaling limit of the loop erased random walk is a simple path (a new result in three dimensions), which can be taken as the simple path of the decomposition. In three dimensions, we also prove that the Hausdorff dimension of any such subsequential scaling limit lies in $$(1,\frac{5}{3}]$$. We conjecture that our decomposition characterizes uniquely the law of the simple path. If so, our results would give a new strategy to the existence of the scaling limit of the loop erased random walk and its rotational invariance.

## Mathematics Subject Classification

60K40 60D05 60G50 60K35

## References

1. 1.
Ball, K., Sterbenz, J.: Explicit bounds for the return probability of simple random walks. J. Theor. Probab. 18(2), 317–326 (2005)
2. 2.
Beffara, V.: The dimension of the SLE curves. Ann. Probab. 36(4), 1421–1452 (2008)
3. 3.
Billingsley, P.: Convergence of Probability Measures. Wiley Series in Probability and Statistics: Probability and Statistics, 2nd edn. Wiley, New York (1999)Google Scholar
4. 4.
Camia, F.: Brownian loops and conformal fields. arXiv:1501.04861
5. 5.
Dvoretzky, A., Erdős, P., Kakutani, S.: Double points of paths of Brownian motion in n-space. Acta Sci. Math. Szeged. 12, 75–81 (1950)
6. 6.
Fristedt, B.: An extension of a theorem of S. J. Taylor concerning the multiple points of the symmetric stable process. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 9, 62–64 (1967)
7. 7.
Guttmann, A.J., Bursill, R.J.: Critical exponents for the loop erased self-avoiding walk by Monte Carlo methods. J. Stat. Phys. 59(1), 1–9 (1990)
8. 8.
Kakutani, S.: On Brownian motions in n-space. Proc. Imp. Acad. Tokyo 20, 648–652 (1944)
9. 9.
Kenyon, R.: The asymptotic determinant of the discrete Laplacian. Acta Math. 185(2), 239–286 (2000)
10. 10.
Kesten, H.: Hitting probabilities of random walks on $${\mathbb{Z}}^{d}$$. Stoch. Process. Appl. 25, 165–184 (1987)
11. 11.
Kozma, G.: The scaling limit of loop-erased random walk in three dimensions. Acta Math. 199(1), 29–152 (2007)
12. 12.
Lawler, G.F.: Intersections of Random Walks. Birkhauser, Boston (1991)
13. 13.
Lawler, G.F.: A self avoiding walk. Duke Math. J. 47, 655–694 (1980)
14. 14.
Lawler, G.F.: Hausdorff dimension of cut points for Brownian motion. Electron. J. Probab. 1, 1–20 (1996)
15. 15.
Lawler, G.F.: Loop-erased random walk. In: Bramson, M., Durrett, R. (eds.) Perplexing Problems in Probability. Progress in Probability, vol. 44, pp. 197–217. Birkhäuser Boston, Boston, MA (1999)
16. 16.
Lawler, G.F.: The probability that planar loop-erased random walk uses a given edge. Electron. J. Probab. 19, 1–13 (2014)
17. 17.
Lawler, G.F., Limic, V.: Random Walk: A Modern Introduction. Cambridge Studies in Advanced Mathematics, vol. 123. Cambridge University Press, Cambridge (2010)Google Scholar
18. 18.
Lawler, G.F., Schramm, O., Werner, W.: Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab. 32(1B), 939–995 (2004)
19. 19.
Lawler, G.F., Schramm, O., Werner, W.: Conformal restriction: the chordal case. J. Am. Math. Soc. 16(4), 917–955 (2003)
20. 20.
Lawler, G.F., Trujillo Ferreras, J.: Random walk loop soup. Trans. Am. Math. Soc. 359(2), 767–787 (2007)
21. 21.
Lawler, G.F., Werner, W.: The Brownian loop soup. Probab. Theory Relat. Fields 128(4), 565–588 (2004)
22. 22.
Le Jan, Y.: Markov Paths, Loops and Fields. Lecture Notes in Mathematics, vol. 2026. Springer, Heidelberg (2011)
23. 23.
Lévy, P.: Le mouvement brownien plan. Am. J. Math. 62, 487–550 (1940)
24. 24.
Masson, R.: The growth exponent for planar loop-erased random walk. Electron. J. Probab. 14, 1012–1073 (2009)
25. 25.
Pemantle, R.: Choosing a spanning tree for the integer lattice uniformly. Ann. Probab. 19(4), 1559–1574 (1991)
26. 26.
Schramm, O.: Scaling limits of loop-erased random walks and uniform spanning trees. Isr. J. Math. 118(1), 221–288 (2000)
27. 27.
Shiraishi, D.: Growth exponent for loop-erased random walk in three dimensions. Ann. Probab. (to appear)Google Scholar
28. 28.
Shiraishi, D.: Hausdorff dimension of the scaling limit of loop-erased random walk in three dimensions. Preprint, arXiv:1604.08091
29. 29.
Slade, G.: Self-avoiding walks. Math. Intell. 16(1), 29–35 (1994)
30. 30.
Symanzik, K.: Euclidean quantum field theory. Scuola internazionale di Fisica “Enrico Fermi” XLV, 152–223 (1969)Google Scholar
31. 31.
Sznitman, A.-S.: Topics in Occupation Times and Gaussian Free Fields. Zürich Lectures in Advanced Mathematics. European Mathematical Society, Zürich (2012)
32. 32.
Taylor, S.J.: Multiple points for the sample paths of the symmetric stable process. Zeitschr. Wahrsch. verw. Gebiete 5, 247–264 (1966)
33. 33.
Wilson, D.B.: Generating random spanning trees more quickly than the cover time. In: Proceedings of the Twenty-eighth Annual ACM Symposium on the Theory of Computing (Philadelphia, PA, 1996), pp. 296–303. ACM, New York (1996)Google Scholar
34. 34.
Wilson, D.B.: The dimension of loop-erased random walk in 3D. Phys. Rev. E 82(6), 062102 (2010)
35. 35.
Zhan, D.: Loop-erasure of plane Brownian motion. Communications in Mathematical Physics 303(3), 709–720 (2011) 