Probability Theory and Related Fields

, Volume 172, Issue 1–2, pp 31–69 | Cite as

Equivalence of Palm measures for determinantal point processes governed by Bergman kernels

  • Alexander I. Bufetov
  • Shilei Fan
  • Yanqi Qiu


For a determinantal point process induced by the reproducing kernel of the weighted Bergman space \(A^2(U, \omega )\) over a domain \(U \subset \mathbb {C}^d\), we establish the mutual absolute continuity of reduced Palm measures of any order provided that the domain U contains a non-constant bounded holomorphic function. The result holds in all dimensions. The argument uses the \(H^\infty (U)\)-module structure of \(A^2(U, \omega )\). A corollary is the quasi-invariance of our determinantal point process under the natural action of the group of compactly supported diffeomorphisms of U.


Bergman kernel Determinantal point process Conditional measure Deletion and insertion tolerance Palm equivalence Monotone coupling 

Mathematics Subject Classification

Primary 60G55 Secondary 32A36 



We are deeply grateful to Alexei Klimenko for useful discussions and very helpful comments. The research of A. Bufetov and S. Fan on this project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under Grant agreement No 647133 (ICHAOS). A. Bufetov has also been funded by the Grant MD 5991.2016.1 of the President of the Russian Federation, by the Russian Academic Excellence Project ‘5-100’ and by the Chaire Gabriel Lamé at the Chebyshev Laboratory of the SPbSU, a joint initiative of the French Embassy in the Russian Federation and the Saint-Petersburg State University. Y. Qiu is supported by the Grant IDEX UNITI-ANR-11-IDEX-0002-02, financed by Programme “Investissements d’Avenir” of the Government of the French Republic managed by the French National Research Agency. Part of this work was carried out at the Institut Henri Poincaré and at the Centre international de rencontres mathématiques in the framework of the CIRM “recherche en petits groupes” programme. We are deeply grateful to these institutions for their warm hospitality.


  1. 1.
    Balk, M.B.: Polyanalytic functions and their generalizations. In: Complex Analysis, I. Encyclopaedia Mathematical Science, vol. 85, pp. 195–253. Springer, Berlin (1997)Google Scholar
  2. 2.
    Bergman, S.: The Kernel Function and Conformal Mapping, vol. 5. American Mathematical Society, Providence RI (1970)zbMATHGoogle Scholar
  3. 3.
    Bufetov, A.I.: Infinite determinantal measures and the ergodic decomposition of infinite Pickrell measures. I. Construction of infinite determinantal measures. Izv. Ross. Akad. Nauk Ser. Mat. 79(6), 18–64 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bufetov, A.I.: Quasi-symmetries of determinantal point processes. arXiv:1409.2068
  5. 5.
    Bufetov, A.I., Qiu, Y.: Determinantal point processes associated with Hilbert spaces of holomorphic functions. Commun. Math. Phys. 351(1), 1–44 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bufetov, A.I., Qiu, Y., Shamov, A.: Kernels of conditional determinantal measures. arXiv:1612.06751
  7. 7.
    Daley, D.J., Vere-Jones, D.: An introduction to the theory of point processes, Vol. 1. In: Probability and its Applications (New York), 2nd edn. Springer, New York (2003). Elementary theory and methodsGoogle Scholar
  8. 8.
    Ghosh, S.: Determinantal processes and completeness of random exponentials: the critical case. Probab. Theory Relat. Fields, pp. 1–23 (2014)Google Scholar
  9. 9.
    Ghosh, S., Peres, Y.: Rigidity and tolerance in point processes: Gaussian zeros and Ginibre eigenvalues. To appear in Duke Math. J. arXiv:1211.3506
  10. 10.
    Haimi, A., Hedenmalm, H.: The polyanalytic Ginibre ensembles. J. Stat. Phys. 153(1), 10–47 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Haimi, A., Hedenmalm, H.: Asymptotic expansion of polyanalytic Bergman kernels. J. Funct. Anal. 267(12), 4667–4731 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Holroyd, A.E., Soo, T.: Insertion and deletion tolerance of point processes. Electron. J. Probab. 18(74), 24 (2013)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Hough, J.B., Krishnapur, M., Peres, Y., Virág, B.: Determinantal processes and independence. Probab. Surv. 3, 206–229 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kallenberg, O.: Random Measures, 4th edn. Akademie-Verlag, Berlin (1986)zbMATHGoogle Scholar
  15. 15.
    Khintchine, A.Ya.: Mathematical methods of queuing theory. Proceedings of the Steklov Institute 49, 3–122 (1955)Google Scholar
  16. 16.
    Krantz, S.G.: Geometric Analysis of the Bergman Kernel and Metric, Graduate Texts in Mathematics, vol. 268. Springer, New York (2013)CrossRefGoogle Scholar
  17. 17.
    Lindvall, T.: On Strassen’s theorem on stochastic domination. Electron. Commun. Probab. 4, 51–59 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Lyons, R.: Determinantal probability: basic properties and conjectures. In: Proceedings of the International Congress of Mathematicians 2014, vol. IV, pp. 137–161. Seoul (2014)Google Scholar
  19. 19.
    Macchi, O.: The coincidence approach to stochastic point processes. Adv. Appl. Probab. 7, 83–122 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Osada, H., Shirai, T.: Absolute continuity and singularity of Palm measures of the Ginibre point process. Probab. Theory Relat. Fields 165(3–4), 725–770 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Palm, C.: Intensitätsschwankungen im Fernsprechverkehr. Ericsson Tech. 44, 1–189 (1943)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Peres, Y., Virág, B.: Zeros of the iid Gaussian power series: a conformally invariant determinantal process. Acta Math. 194(1), 1–35 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Qiu, Y.: Infinite random matrices and ergodic decomposition of finite and infinite Hua–Pickrell measures. Adv. Math. 308, 1209–1268 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Rohlin, V.A.: On the fundamental ideas of measure theory. Am. Math. Soc. Transl. 1952(71), 55 (1952)MathSciNetGoogle Scholar
  25. 25.
    Shirai, T., Takahashi, Y.: Fermion process and Fredholm determinant. In: Proceedings of the Second ISAAC Congress, Vol. 1 (Fukuoka, 1999), vol. 7 of International Society for Analysis, its Applications and Computation, pp. 15–23. Kluwer Academic Publishers, Dordrecht (2000)Google Scholar
  26. 26.
    Shirai, T., Takahashi, Y.: Random point fields associated with certain Fredholm determinants I: fermion, Poisson and boson point processes. J. Funct. Anal. 205(2), 414–463 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Soshnikov, A.: Determinantal random point fields. Uspekhi Mat. Nauk 55(5(335)), 107–160 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Strassen, V.: The existence of probability measures with given marginals. Ann. Math. Stat. 36, 423–439 (1965)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Alexander I. Bufetov
    • 1
    • 2
    • 3
    • 4
    • 5
  • Shilei Fan
    • 1
    • 6
  • Yanqi Qiu
    • 7
    • 8
  1. 1.Centrale Marseille, CNRS, Institut de Mathématiques de Marseille, UMR 7373Aix-Marseille UniversitéMarseilleFrance
  2. 2.Steklov Mathematical Institute of RASMoscowRussia
  3. 3.Institute for Information Transmission ProblemsMoscowRussia
  4. 4.National Research University Higher School of EconomicsMoscowRussia
  5. 5.The Chebyshev LaboratorySaint-Petersburg State UniversitySaint PetersburgRussia
  6. 6.School of Mathematics and Statistics, Hubei Key Laboratory of Mathematical SciencesCentral China Normal UniversityWuhanChina
  7. 7.CNRS, Institut de Mathématiques de ToulouseUniversité Paul SabatierToulouse Cedex 9France
  8. 8.Institute of Mathematics, Academy of Mathematics and Systems ScienceChinese Academy of SciencesBeijingChina

Personalised recommendations