Skip to main content
Log in

Importance sampling in path space for diffusion processes with slow-fast variables

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

Importance sampling is a widely used technique to reduce the variance of a Monte Carlo estimator by an appropriate change of measure. In this work, we study importance sampling in the framework of diffusion process and consider the change of measure which is realized by adding a control force to the original dynamics. For certain exponential type expectation, the corresponding control force of the optimal change of measure leads to a zero-variance estimator and is related to the solution of a Hamilton–Jacobi–Bellmann equation. We focus on certain diffusions with both slow and fast variables, and the main result is that we obtain an upper bound of the relative error for the importance sampling estimators with control obtained from the limiting dynamics. We demonstrate our approximation strategy with an illustrative numerical example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Asmussen, S., Glynn, P.W.: Stochastic simulation: algorithms and analysis. Springer, New York (2007)

    MATH  Google Scholar 

  2. Asmussen, S., Kroese, D.P.: Improved algorithms for rare event simulation with heavy tails. Adv. Appl. Prob. 38, 545–558 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bensoussan, A., Lions, J.-L., Papanicolaou, G.: Asymptotic analysis for periodic structures. Studies in mathematics and its applications, North-Holland (1978)

  4. Berglund, N., Gentz, B.: Metastability in simple climate models: pathwise analysis of slowly driven Langevin equations. Stoch. Dyn. 02, 327–356 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Blanchet, J., Glynn, P.: Efficient rare-event simulation for the maximum of heavy-tailed random walks. Ann. Appl. Probab. 18, 1351–1378 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boué, M., Dupuis, P.: A variational representation for certain functionals of Brownian motion. Ann. Probab. 26, 1641–1659 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brooks, S.P.: Markov chain Monte Carlo method and its application. J. R. Stat. Soc. Ser D 47, 69–100 (1998)

    Article  Google Scholar 

  8. Cerrai, S.: Second order PDE’s in finite and infinite dimension: a probabilistic approach, no. 1762 in Lecture Notes in Mathematics, Springer, (2001)

  9. Cerrai, S.: Averaging principle for systems of reaction-diffusion equations with polynomial nonlinearities perturbed by multiplicative noise. Siam J. Math. Anal. 43, 2482–2518 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Da Prato, G., Zabczyk, J.: Ergodicity for infinite dimensional systems, Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology. Cambridge University Press, (1996)

  11. Da Prato, G., Zabczyk, J.: Second order partial differential equations in Hilbert spaces, London Mathematical Society Lecture Note Series. Cambridge University Press, London (2002)

  12. Doucet, A., De Freitas, N., Gordon, N. (eds.): Sequential Monte Carlo methods in practice. Springer, New York (2001)

  13. Duane, S., Kennedy, A.D., Pendleton, B.J., Roweth, D.: Hybrid Monte Carlo. Phys. Lett. B 195, 216–222 (1987)

    Article  Google Scholar 

  14. Dupuis, P., Spiliopoulos, K., Wang, H.: Rare event simulation for rough energy landscapes. In: Simulation Conference (WSC), Proceedings of the 2011 Winter, 2011, pp. 504–515

  15. Dupuis, P., Spiliopoulos, K., Wang, H.: Importance sampling for multiscale diffusions. Multiscale Model. Simul. 10, 1–27 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dupuis, P., Wang, H.: Importance sampling, large deviations, and differential games. Stoch. Stoch. Rep. 76, 481–508 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dupuis, P., Wang, H.: Subsolutions of an Isaacs equation and efficient schemes for importance sampling. Math. Oper. Res. 32, 723–757 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu, W .E.D., Vanden-Eijnden, E.: Analysis of multiscale methods for stochastic differential equations. Comm. Pure Appl. Math. 58, 1544–1585 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fleming, W.H., Soner, H.M.: Controlled Markov processes and viscosity solutions. Springer, New York (2006)

    MATH  Google Scholar 

  20. Freidlin, M., Wentzell, A.: Random perturbations of dynamical systems, vol. 260 of Grundlehren der mathematischen Wissenschaften. Springer, Berlin (2012)

    Google Scholar 

  21. Friedman, A.: Partial differential equations of parabolic type. Prentice-Hall, Englewood Cliffs (1964)

    MATH  Google Scholar 

  22. Givon, D.: Strong convergence rate for two-time-scale jump-diffusion stochastic differential systems. Multiscale Model. Simul. 6, 577–594 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Glasserman, P., Heidelberger, P., Shahabuddin, P.: Asymptotically optimal importance sampling and stratification for pricing path-dependent options. Math. Finance 9, 117–152 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hartmann, C., Latorre, J., Pavliotis, G., Zhang, W.: Optimal control of multiscale systems using reduced-order models. J. Comput. Dyn. 1, 279–306 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hedges, L.O., Jack, R.L., Garrahan, J.P., Chandler, D.: Dynamic order-disorder in atomistic models of structural glass formers. Science 323, 1309–1313 (2009)

    Article  Google Scholar 

  27. Huang, C., Liu, D.: Strong convergence and speed up of nested stochastic simulation algorithm. Commun. Comput. Phys. 15, 1207–1236 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Jack, R.L., Sollich, P.: Effective interactions and large deviations in stochastic processes. Eur. Phys. J. Special Topics 224, 2351–2367 (2015)

    Article  Google Scholar 

  29. Karatzas, I., Shreve, S.E.: Brownian motion and stochastic calculus, 2nd edn. Springer, New York (1991)

    MATH  Google Scholar 

  30. Khasminskii, R.: Principle of averaging for parabolic and elliptic differential equations and for Markov processes with small diffusion. Theory Probab. Appl. 8, 1–21 (1963)

    Article  Google Scholar 

  31. Krylov, N.: Controlled diffusion processes. Stochastic modelling and applied probability. Springer, Berlin (1980)

    Google Scholar 

  32. Latorre, J.C., Metzner, P., Hartmann, C., Schütte, C.: A structure-preserving numerical discretization of reversible diffusions. Commun. Math. Sci. 9, 1051–1072 (2010)

    MathSciNet  MATH  Google Scholar 

  33. Liu, D.: Strong convergence of principle of averaging for multiscale stochastic dynamical systems. Commun. Math. Sci. 8, 999–1020 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Liu, J .S.: Monte Carlo strategies in scientific computing, 2nd edn. Springer, New York (2008)

    MATH  Google Scholar 

  35. Liu, J.S., Chen, R.: Sequential monte carlo methods for dynamic systems. J. Am. Statist. Assoc. 93, 1032–1044 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  36. Majda, A., Franzke, C., Khouider, B.: An applied mathematics perspective on stochastic modelling for climate. Philos. Trans. A Math. Phys. Eng. Sci. 366, 2429–2455 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Øksendal, B.: Stochastic differential equations: an introduction with applications, 6th edn. Springer, Berlin (2010)

    MATH  Google Scholar 

  38. Pavliotis, G., Stuart, A.: Multiscale methods: averaging and homogenization. Springer, Berlin (2008)

    MATH  Google Scholar 

  39. Prinz, J.-H., Wu, H., Sarich, M., Keller, B., Senne, M., Held, M., Chodera, J. D., Schütte, C., Noé, F.: Markov models of molecular kinetics: Generation and validation. J. Chem. Phys.,134 (2011)

  40. Schütte, C., Fischer, A., Huisinga, W., Deuflhard, P.: A direct approach to conformational dynamics based on hybrid Monte Carlo. J. Comput. Phys. 151, 146–168 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  41. Spiliopoulos, K.: Large deviations and importance sampling for systems of slow-fast motion. Appl. Math. Optim. 67, 123–161 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Spiliopoulos, K.: Nonasymptotic performance analysis of importance sampling schemes for small noise diffusions. J. Appl. Probab. 52, 797–810 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Spiliopoulos, K.: Rare event simulation for multiscale diffusions in random environments. Multiscale Model. Simul. 13, 1290–1311 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Spiliopoulos, K., Dupuis, P., Zhou, X.: Escaping from an attractor: Importance sampling and rest points, part I. Ann. Appl. Probab. 25, 2909–2958 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. Vanden-Eijnden, E., Weare, J.: Rare event simulation of small noise diffusions. Comm. Pure Appl. Math. 65, 1770–1803 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhang, W., Wang, H., Hartmann, C., Weber, M., Schütte, C.: Applications of the cross-entropy method to importance sampling and optimal control of diffusions. SIAM J. Sci. Comput. 36, A2654–A2672 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support by the DFG Research Center Matheon, the Einstein Center for Mathematics ECMath and the DFG-CRC 1114 “Scaling Cascades in Complex Systems”. Special thanks also go to anonymous referees whose valuable comments and criticism have helped to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhang.

Appendices

Two useful inequalities

Claim 7.1

Consider functions \(x_1(t), x_2(t)\) on \(t \in [0,T]\) satisfying

$$\begin{aligned} {\dot{x}}_1(t)&\le a_{11}\,x_1(t) + a_{12}\,x_2(t) \\ {\dot{x}}_2(t)&\le \frac{a_{21}}{\epsilon } x_1(t) - \frac{a_{22}}{\epsilon } x_2(t) \end{aligned}$$

with \(x_1(0) = 0, x_2(0) = 1\), \(a_{ij} > 0\), \(1\le i, j \le 2\). Further assume that \(x_1(t) \ge 0\) for all \(t\in [0,T]\). Then there is a constant \(C > 0\) depending on \(a_{ij}\) and T, such that

$$\begin{aligned} \max _{0\le s \le T} x_1(s) \le C\epsilon \,, \qquad x_2(t) \le e^{-\frac{a_{22} t}{\epsilon }} + C\epsilon \,, \quad t \in [0, T]. \end{aligned}$$
(7.1)

Proof

Applying Gronwall’s inequality to the equation of \(x_2\), we have

$$\begin{aligned} x_2(t)&\le e^{-\frac{a_{22}t}{\epsilon }} + \int _0^t e^{-\frac{a_{22}}{\epsilon }(t-s)} \frac{a_{21}}{\epsilon } x_1(s) ds \nonumber \\&\le e^{-\frac{a_{22}t}{\epsilon }} + \frac{a_{21}}{a_{22}} \max _{0 \le s \le t} x_1(s)\,. \end{aligned}$$
(7.2)

Applying Gronwall’s inequality to \(x_1\) and using (7.2), we find

$$\begin{aligned} x_1(t) \le a_{12} \int _0^t e^{a_{11}(t-s)} \Big [e^{-\frac{a_{22}s}{\epsilon }} + \frac{a_{21}}{a_{22}} \big (\max _{0 \le r \le s} x_1(r)\big )\Big ] ds\,. \end{aligned}$$
(7.3)

Since the right hand side in the last inequality is monotonically increasing (as a function of t), it follows that

$$\begin{aligned} \max _{0\le s \le t} x_1(s)&\le a_{12} \int _0^t e^{a_{11}(t-s)} \Big [e^{-\frac{a_{22}s}{\epsilon }} + \frac{a_{21}}{a_{22}} \big (\max _{0 \le r \le s} x_1(r)\big )\Big ] ds \nonumber \\&\le \frac{a_{12}}{a_{22}} e^{a_{11}T}\epsilon + \frac{a_{12}a_{21}}{a_{22}} \int _0^t e^{a_{11}(t-s)} \big (\max _{0\le r \le s} x_1(r)\big ) ds\,. \end{aligned}$$
(7.4)

The first part of the assertion then follows by applying Gronwall’s inequality in integral form to \(\max \limits _{0\le s \le t} x_1(s)\), while the second part is obtained using (7.2). \(\square \)

For \(0< \epsilon < 1\), we set \(t_1 = -\frac{2\epsilon \ln \epsilon }{\lambda } > 0\) and introduce the function \(\gamma :[0,T] \rightarrow [0, 1]\) by

$$\begin{aligned} \gamma (t) =\left\{ \begin{array}{cl} 1- \frac{t}{t_1} &{} \qquad 0 \le t \le t_1 \\ 0 &{} \qquad t_1 < t \le T\,. \end{array} \right. \end{aligned}$$
(7.5)

Claim 7.2

Consider functions \(x_1(t), x_2(t)\) on \(t \in [0, T]\) satisfying

$$\begin{aligned} {\dot{x}}_1(t)&\le a_1(1 + \epsilon ^{-\gamma (t)}) x_1(t) + a_2\epsilon ^{\gamma (t)} x_2(t) \\ {\dot{x}}_2(t)&\le \frac{a_3x_1(t)}{\epsilon } -\frac{\lambda x_2(t)}{\epsilon } \,, \end{aligned}$$

where \(\gamma \) is given in (7.5), \(a_i \ge 0, 1\le i \le 3\), and \(x_1(0) = 0, x_2(0) = 1\). Further assume that \(x_1(t) \ge 0\) on \(t \in [0,T]\). Then there is a constant \(C > 0\) independent of \(\epsilon \), such that

$$\begin{aligned} \max _{0\le s \le T} x_1(s) \le C\epsilon ^2, \qquad x_2(t) \le e^{-\frac{\lambda t}{\epsilon }} + C\epsilon ^2\,, \quad t \in [0,T]\,. \end{aligned}$$
(7.6)

Proof

As in Claim 7.1, we can obtain

$$\begin{aligned} x_2(t)&\le e^{-\frac{\lambda t}{\epsilon }} + \frac{a_3}{\lambda } \max _{0 \le s \le t} x_1(s) \end{aligned}$$
(7.7)
$$\begin{aligned} \max _{0\le s \le t} x_1(s)&\le a_2\int _0^t e^{a_1\int _s^t (1 + \epsilon ^{-\gamma (r)}) dr} \epsilon ^{\gamma (s)} \big [e^{-\frac{\lambda s}{\epsilon }} + \frac{a_3}{\lambda }\big (\max _{0 \le r \le s} x_1(r)\big )\big ] ds \,. \end{aligned}$$
(7.8)

Then, for \(t < t_1\), the second inequality above implies

$$\begin{aligned} \max _{0\le s \le t} x_1(s) \le C \epsilon ^2 + \frac{a_2a_3}{\lambda } \int _0^{t} e^{a_1\int _s^t (1 + \epsilon ^{-\gamma (r)}) dr} \epsilon ^{\gamma (s)} \big (\max _{0 \le r \le s} x_1(r)\big ) ds \,. \end{aligned}$$
(7.9)

Using (7.7) and Gronwall’s inequality again, we conclude that

$$\begin{aligned} \max _{0\le s \le t_1} x_1(s) \le C\epsilon ^2, \quad x_2(t) \le e^{-\frac{\lambda t}{\epsilon }} + C\epsilon ^2 , \qquad t \le t_1\,. \end{aligned}$$
(7.10)

Repeating the above argument for \(t\in [t_1, T]\), noticing that \(x_1(t_1) \le C\epsilon ^2\), \(x_2(t_1) \le C\epsilon ^2\), \(\gamma (t) \equiv 0, t \in [t_1, T]\), it follows that

$$\begin{aligned} \max _{t_1\le s \le T} x_1(s) \le C\epsilon ^2, \quad x_2(t) \le C\epsilon ^2 , \qquad t \in [t_1, T]\,. \end{aligned}$$
(7.11)

The proof is completed by combining (7.10) and (7.11). \(\square \)

Properties of the stationary process

For fixed \(x \in {\mathbb {R}}^k\) and \(\tau \in {\mathbb {R}}\), we introduce the process

$$\begin{aligned} d\xi ^x_{\tau , s} = \frac{1}{\epsilon } g(x,\xi ^x_{\tau , s}) ds + \frac{1}{\sqrt{\epsilon }}\alpha _2(x,\xi ^x_{\tau , s}) dw_s\,, \quad s\ge \tau \,, \quad \xi ^x_{\tau , \tau } = y \end{aligned}$$
(8.1)

where \(w_s\) is a standard Wiener process in \({\mathbb {R}}^{m_2}\). In the following, we summarize some properties related to the above process that we called the fast subsystem in Sect. 3. See also [10, 33] for additional results.

Lemma 8.1

Under Assumptions 12, there exists a constant \(C > 0\), independent of \(\epsilon , x, y\), such that:

  1. 1.

    \({{\mathbf {E}}}|\xi ^x_{\tau , s}|^4 \le e^{-\frac{\lambda (s-\tau )}{\epsilon }} |y|^4 + C\big (|x|^4 + 1\big )\).

  2. 2.

    For \(\tau _1 \le \tau _2\), it holds

    $$\begin{aligned}{{\mathbf {E}}}|\xi ^x_{\tau _2, s} - \xi ^x_{\tau _1, s}|^4 \le C\big (|x|^4 + |y|^4+1\big )\,e^{-\frac{4\lambda (s-\tau _2)}{\epsilon }}\,, \quad s \ge \tau _2\,. \end{aligned}$$
  3. 3.

    For \(x, x' \in {\mathbb {R}}^k\) and \(\tau _1 \le \tau _2\),

    $$\begin{aligned} {{\mathbf {E}}}|\xi ^{x'}_{\tau _2, s} - \xi ^{x}_{\tau _1, s}|^4\le e^{-\frac{2\lambda (s-\tau _2)}{\epsilon }} \big (|x|^4 + |y|^4 + 1\big ) + C |x' - x|^4\,, \quad s \ge \tau _2\,. \end{aligned}$$

Proof

  1. 1.

    By Ito’s formula, we have

    $$\begin{aligned} \frac{d{{\mathbf {E}}}|\xi ^x_{\tau , s}|^4}{ds} =&\, \frac{1}{\epsilon } {{\mathbf {E}}}\Big [|\xi ^x_{\tau , s}|^2 \big (4\langle g(x, \xi ^x_{\tau , s}), \xi ^x_{\tau , s}\rangle + 2\Vert \alpha _2(x,\xi ^x_{\tau , s})\Vert ^2\big ) \\&+\, 4|\alpha ^T_2(x,\xi ^x_{\tau , s})\xi ^x_{\tau , s}|^2\Big ] \nonumber \\ \le&\, \frac{1}{\epsilon } {{\mathbf {E}}}\Big [|\xi ^x_{\tau , s}|^2 \big (4\langle g(x, \xi ^x_{\tau , s}), \xi ^x_{\tau , s}\rangle + 6\Vert \alpha _2(x,\xi ^x_{\tau , s})\Vert ^2\big )\Big ]\,. \end{aligned}$$

    Applying inequality (3.13) in Remark 2 and inequality (5.9), we obtain

    $$\begin{aligned} \frac{d{{\mathbf {E}}}|\xi ^x_{\tau , s}|^4}{ds} \le&-\frac{2\lambda }{\epsilon } {{\mathbf {E}}}|\xi ^x_{\tau , s}|^4 + \frac{C}{\epsilon } {{\mathbf {E}}}\Big [|\xi ^x_{\tau , s}|^2 (|x|^2 + 1)\Big ] \nonumber \\ \le&-\frac{\lambda }{\epsilon } {{\mathbf {E}}}|\xi ^x_{\tau , s}|^4 + \frac{C}{\epsilon } \Big (|x|^4 + 1\Big )\,, \end{aligned}$$

    and the first statement follows from Gronwall’s inequality.

  2. 2.

    For the second statement, using Ito’s formula and Assumption 2, it follows

    $$\begin{aligned}&\frac{d{{\mathbf {E}}}|\xi ^x_{\tau _2, s} - \xi ^x_{\tau _1, s}|^4}{ds} \nonumber \\&\quad = \frac{1}{\epsilon } {{\mathbf {E}}}\Big [ |\xi ^x_{\tau _2, s} - \xi ^x_{\tau _1, s}|^2 \big (4\langle g(x, \xi ^x_{\tau _2, s}) - g(x, \xi ^x_{\tau _1, s}), \xi ^x_{\tau _2, s} - \xi ^x_{\tau _1, s} \rangle \nonumber \\&\qquad + 2\Vert \alpha _2(x,\xi ^x_{\tau _2, s})-\alpha _2(x,\xi ^x_{\tau _1, s})\Vert ^2\big ) + 4\big |\big (\alpha _2(x,\xi ^x_{\tau _2, s})\\&\qquad - \alpha _2(x,\xi ^x_{\tau _1, s})\big )^T\big (\xi ^x_{\tau _2, s} - \xi ^x_{\tau _1, s}\big )\big |^2\Big ] \nonumber \\&\quad \le \frac{1}{\epsilon } {{\mathbf {E}}}\Big [ |\xi ^x_{\tau _2, s} - \xi ^x_{\tau _1, s}|^2 \big (4\langle g(x, \xi ^x_{\tau _2, s}) - g(x, \xi ^x_{\tau _1, s}), \xi ^x_{\tau _2, s} - \xi ^x_{\tau _1, s} \rangle \\&\qquad + 6\Vert \alpha _2(x,\xi ^x_{\tau _2, s})-\alpha _2(x,\xi ^x_{\tau _1, s})\Vert ^2\big ) \Big ] \nonumber \\&\quad \le -\frac{4\lambda }{\epsilon } {{\mathbf {E}}}|\xi ^x_{\tau _2, s} - \xi ^x_{\tau _1, s}|^4\,. \end{aligned}$$

    Therefore, integrating and using the first statement above, we obtain

    $$\begin{aligned} {{\mathbf {E}}}|\xi ^x_{\tau _2, s} - \xi ^x_{\tau _1, s}|^4 \le e^{-\frac{4\lambda (s-\tau _2)}{\epsilon }} {{\mathbf {E}}}|\xi ^x_{\tau _1, \tau _2} - y|^4 \le C\big (1+|x|^4 + |y|^4\big )e^{-\frac{4\lambda (s-\tau _2)}{\epsilon }}\,. \end{aligned}$$
  3. 3.

    For the third statement, in a similar way, applying Ito’s formula, using Assumption 2, as well as Lipschitz property of functions g and \(\alpha _2\), we have

    $$\begin{aligned}&\frac{d{{\mathbf {E}}}|\xi ^{x'}_{\tau _2, s} - \xi ^{x}_{\tau _1, s}|^4}{ds} \nonumber \\&\quad = \frac{1}{\epsilon } {{\mathbf {E}}}\Big [ |\xi ^{x'}_{\tau _2, s} - \xi ^x_{\tau _1, s}|^2 \big (4\langle g(x', \xi ^{x'}_{\tau _2, s}) - g(x, \xi ^x_{\tau _1, s}), \xi ^{x'}_{\tau _2, s} - \xi ^x_{\tau _1, s} \rangle \nonumber \\&\qquad + 2\Vert \alpha _2(x',\xi ^{x'}_{\tau _2, s})-\alpha _2(x,\xi ^x_{\tau _1, s})\Vert ^2\big ) + 4\big |\big (\alpha _2(x',\xi ^{x'}_{\tau _2, s})\\&\qquad - \alpha _2(x,\xi ^x_{\tau _1, s})\big )^T\big (\xi ^{x'}_{\tau _2, s} - \xi ^x_{\tau _1, s}\big )\big |^2\Big ] \nonumber \\&\quad \le \frac{1}{\epsilon } {{\mathbf {E}}}\Big [ |\xi ^{x'}_{\tau _2, s} - \xi ^x_{\tau _1, s}|^2 \big (4\langle g(x', \xi ^{x'}_{\tau _2, s}) - g(x, \xi ^x_{\tau _1, s}), \xi ^{x'}_{\tau _2, s} - \xi ^x_{\tau _1, s} \rangle \\&\qquad + 6\Vert \alpha _2(x',\xi ^{x'}_{\tau _2, s})-\alpha _2(x,\xi ^x_{\tau _1, s})\Vert ^2\big ) \Big ] \nonumber \\&\quad \le \frac{1}{\epsilon } {{\mathbf {E}}}\Big [ |\xi ^{x'}_{\tau _2, s} - \xi ^x_{\tau _1, s}|^2 \big (4\langle g(x', \xi ^{x'}_{\tau _2, s}) - g(x', \xi ^x_{\tau _1, s}), \xi ^{x'}_{\tau _2, s} - \xi ^x_{\tau _1, s} \rangle \\&\qquad + 12\Vert \alpha _2(x',\xi ^{x'}_{\tau _2, s})-\alpha _2(x',\xi ^x_{\tau _1, s})\Vert ^2\big ) \Big ] \nonumber \\&\qquad + \frac{1}{\epsilon } {{\mathbf {E}}}\Big [ |\xi ^{x'}_{\tau _2, s} - \xi ^x_{\tau _1, s}|^2 \big (4\langle g(x', \xi ^{x}_{\tau _1, s}) - g(x, \xi ^x_{\tau _1, s}), \xi ^{x'}_{\tau _2, s} - \xi ^x_{\tau _1, s} \rangle \\&\qquad + 12\Vert \alpha _2(x',\xi ^{x}_{\tau _1, s})-\alpha _2(x,\xi ^x_{\tau _1, s})\Vert ^2\big ) \Big ] \nonumber \\&\quad \le -\frac{4\lambda }{\epsilon } {{\mathbf {E}}}|\xi ^{x'}_{\tau _2, s} - \xi ^{x}_{\tau _1, s}|^4\\&\qquad + \frac{C}{\epsilon } {{\mathbf {E}}}\big ( |\xi ^{x'}_{\tau _2, s} - \xi ^x_{\tau _1, s}|^3|x'-x|\big ) + \frac{C}{\epsilon } {{\mathbf {E}}}\big (|\xi ^{x'}_{\tau _2, s} - \xi ^x_{\tau _1, s}|^2|x'-x|^2\big ) \nonumber \\&\quad \le -\frac{2\lambda }{\epsilon } {{\mathbf {E}}}|\xi ^{x'}_{\tau _2, s} - \xi ^{x}_{\tau _1, s}|^4 + \frac{C}{\epsilon } |x' - x|^4\,, \end{aligned}$$

    where inequality (5.9) is used to obtain the last inequality. Gronwall’s inequality together with the first statement above then yield the assertion.

\(\square \)

Now consider the derivative process

$$\begin{aligned} d\xi ^x_{\tau , s, x_i} =&\, \frac{1}{\epsilon } \Big (D_{x_i} g(x,\xi ^x_{\tau , s}) + \nabla _{y} g(x,\xi ^x_{\tau , s}) \xi ^x_{\tau , s, x_i}\Big ) ds \\&+ \frac{1}{\sqrt{\epsilon }}\Big (D_{x_i} \alpha _2(x,\xi ^x_{\tau , s}) + \nabla _{y} \alpha _2(x,\xi ^x_{\tau , s}) \xi ^x_{\tau , s, x_i}\Big ) dw_s\,, \end{aligned}$$

with \(s\ge \tau \,, \xi ^x_{\tau , \tau ,x_i} = 0\), \(1\le i \le k\). In the above, we used \(D_{x_i}\) to denote derivatives with respect to scalar \(x_i \in {\mathbb {R}}\) and \(\nabla _y\) to denote derivatives with respect to a vector \(y \in {\mathbb {R}}^l\). We summarize its properties in the following result.

Lemma 8.2

Under Assumptions 12, there exists a constant \(C > 0\), independent of \(\epsilon , x, y\), such that \(\forall 1 \le i \le k\),

  1. 1.

    For \(x \in {\mathbb {R}}^k\), \(s \ge \tau \), \({{\mathbf {E}}}|\xi ^x_{\tau , s, x_i}|^4 \le C\).

  2. 2.

    For \(\tau _1 \le \tau _2\), \(x \in {\mathbb {R}}^k\),

    $$\begin{aligned} {{\mathbf {E}}}|\xi ^x_{\tau _2, s, x_i} - \xi ^x_{\tau _1, s, x_i}|^2 \le C\big (1 + |x|^2+|y|^2\big ) e^{-\frac{\lambda (s-\tau _2)}{\epsilon }}\,. \end{aligned}$$
  3. 3.

    For \(\tau _1 \le \tau _2\), \(x, x' \in {\mathbb {R}}^k\),

    $$\begin{aligned} {{\mathbf {E}}}|\xi ^{x'}_{\tau _2, s, x_i} - \xi ^{x}_{\tau _1, s, x_i}|^2 \le Ce^{-\frac{\lambda (s-\tau _2)}{\epsilon }} \left[ 1 + \frac{s - \tau _2}{\epsilon } \big (1 + |x|^2+|y|^2\big )\right] + C |x - x'|^2\,. \end{aligned}$$

Proof

  1. 1.

    Using Ito’s formula, Assumption 1 (Lipschitz continuity of functions g and \(\alpha _2\)), inequality (3.11) in Remark 2, as well as inequality (5.9), we see that

    $$\begin{aligned} \frac{d{{\mathbf {E}}}|\xi ^x_{\tau , s, x_i}|^4}{ds} \le&\ \frac{1}{\epsilon } {{\mathbf {E}}}\Big [|\xi ^x_{\tau , s, x_i}|^2\Big (4\langle D_{x_i} g(x,\xi ^x_{\tau , s}) + \nabla _{y} g(x,\xi ^x_{\tau , s}) \xi ^x_{\tau , s, x_i}, \xi ^x_{\tau , s, x_i}\rangle \\&+ 6\Vert D_{x_i} \alpha _2(x,\xi ^x_{\tau , s}) + \nabla _{y} \alpha _2(x,\xi ^x_{\tau , s}) \xi ^x_{\tau , s, x_i}\Vert ^2\Big )\Big ] \nonumber \\ \le&\frac{1}{\epsilon } {{\mathbf {E}}}\Big [|\xi ^x_{\tau , s, x_i}|^2\Big (C|\xi ^x_{\tau , s, x_i}| + 4\langle \nabla _{y} g(x,\xi ^x_{\tau , s}) \xi ^x_{\tau , s, x_i}, \xi ^x_{\tau , s, x_i}\rangle + C \\&+ 12\Vert \nabla _{y} \alpha _2(x,\xi ^x_{\tau , s}) \xi ^x_{\tau , s, x_i}\Vert ^2\Big )\Big ] \nonumber \\ \le&-\frac{2\lambda }{\epsilon } {{\mathbf {E}}}|\xi ^x_{\tau , s, x_i}|^4 + \frac{C}{\epsilon } \end{aligned}$$

    and therefore \({{\mathbf {E}}}|\xi ^x_{\tau , s, x_i}|^4 \le C\) by Gronwall’s inequality.

  2. 2.

    Now consider \(\xi ^x_{\tau _1, s,x_i}, \xi ^x_{\tau _2, s,x_i}\) with \(\tau _1 \le \tau _2\). Using Lipschitz condition of functions \(g, \alpha _2\), inequality (3.11) in Remark 2, as well as inequality (5.9), it follows

    $$\begin{aligned}&\frac{d{{\mathbf {E}}}|\xi ^x_{\tau _2, s, x_i} - \xi ^x_{\tau _1, s, x_i}|^2}{ds} \nonumber \\&\quad = \frac{2}{\epsilon } {{\mathbf {E}}}\langle D_{x_i} g(x, \xi ^x_{\tau _2, s}) - D_{x_i} g(x, \xi ^x_{\tau _1, s}) + \nabla _{y} g(x, \xi ^x_{\tau _2, s}) \xi ^x_{\tau _2, s, x_i} \\&\qquad - \nabla _{y} g(x, \xi ^x_{\tau _1, s}) \xi ^x_{\tau _1, s, x_i}, \xi ^x_{\tau _2, s, x_i}-\xi ^x_{\tau _1, s, x_i}\rangle \nonumber \\&\qquad + \frac{1}{\epsilon } {{\mathbf {E}}}\Vert D_{x_i} \alpha _2(x, \xi ^x_{\tau _2, s}) - D_{x_i} \alpha _2(x, \xi ^x_{\tau _1, s}) + \nabla _{y} \alpha _2(x, \xi ^x_{\tau _2, s}) \xi ^x_{\tau _2, s, x_i} \\&\qquad - \nabla _{y} \alpha _2(x, \xi ^x_{\tau _1, s}) \xi ^x_{\tau _1, s, x_i}\Vert ^2 \nonumber \\&\quad \le \frac{C}{\epsilon }{{\mathbf {E}}}\Big (|\xi ^x_{\tau _2, s} - \xi ^x_{\tau _1, s}||\xi ^x_{\tau _2, s, x_i} - \xi ^x_{\tau _1, s, x_i}|\Big ) + \frac{2}{\epsilon } {{\mathbf {E}}}\langle \big (\nabla _{y} g(x, \xi ^x_{\tau _2, s})\\&\qquad -\nabla _{y} g(x, \xi ^x_{\tau _1, s})\big )\xi ^x_{\tau _1, s, x_i}, \xi ^x_{\tau _2, s, x_i} - \xi ^x_{\tau _1, s, x_i}\rangle \nonumber \\&\qquad + \frac{2}{\epsilon } {{\mathbf {E}}}\langle \nabla _{y} g(x, \xi ^x_{\tau _2, s})(\xi ^x_{\tau _2, s, x_i} {-} \xi ^x_{\tau _1, s, x_i}), \xi ^x_{\tau _2, s, x_i} - \xi ^x_{\tau _1, s, x_i}\rangle {+} \frac{C}{\epsilon } {{\mathbf {E}}}|\xi ^x_{\tau _2, s} - \xi ^x_{\tau _1, s}|^2\nonumber \\&\qquad + \frac{3}{\epsilon } {{\mathbf {E}}}\Vert \big (\nabla _{y} \alpha _2(x, \xi ^x_{\tau _2, s}){-}\nabla _{y} \alpha _2(x, \xi ^x_{\tau _1, s})\big ) \xi ^x_{\tau _1, s, x_i}\Vert ^2\\&\qquad + \frac{3}{\epsilon } {{\mathbf {E}}}\Vert \nabla _{y} \alpha _2(x, \xi ^x_{\tau _2, s})(\xi ^x_{\tau _2, s, x_i} - \xi ^x_{\tau _1, s, x_i})\Vert ^2 \nonumber \\&\quad \le -\frac{\lambda }{\epsilon } {{\mathbf {E}}}|\xi ^x_{\tau _2, s, x_i} - \xi ^x_{\tau _1, s, x_i}|^2 + \frac{C}{\epsilon } \big ({{\mathbf {E}}}|\xi ^x_{\tau _2, s} - \xi ^x_{\tau _1, s}|^4\big )^{\frac{1}{2}} \big ({{\mathbf {E}}}|\xi ^x_{\tau _1, s, x_i}|^4)^{\frac{1}{2}} \\&\qquad + \frac{C}{\epsilon } {{\mathbf {E}}}|\xi ^x_{\tau _2, s} - \xi ^x_{\tau _1, s}|^2 \nonumber \\&\quad \le -\frac{\lambda }{\epsilon } {{\mathbf {E}}}|\xi ^x_{\tau _2, s, x_i} - \xi ^x_{\tau _1, s, x_i}|^2 + \frac{C}{\epsilon } (1 + |x|^2+|y|^2) e^{-\frac{2\lambda (s-\tau _2)}{\epsilon }}\,, \end{aligned}$$

    where the first assertion above and Lemma 8.1 have been used in the last inequality. Then Gronwall’s inequality entails

    $$\begin{aligned} {{\mathbf {E}}}|\xi ^x_{\tau _2, s, x_i} - \xi ^x_{\tau _1, s, x_i}|^2 \le C\big (1 + |x|^2+|y|^2\big ) e^{-\frac{\lambda (s-\tau _2)}{\epsilon }}\,. \end{aligned}$$
  3. 3.

    Consider \(\xi ^{x}_{\tau _1, s,x_i}, \xi ^{x'}_{\tau _2, s,x_i}\) with \(\tau _1 \le \tau _2\). In a similar way, we have

    $$\begin{aligned}&\frac{d{{\mathbf {E}}}|\xi ^{x'}_{\tau _2, s, x_i} - \xi ^{x}_{\tau _1, s, x_i}|^2}{ds} \nonumber \\&\quad = \frac{2}{\epsilon } {{\mathbf {E}}}\langle D_{x_i} g(x', \xi ^{x'}_{\tau _2, s}) - D_{x_i} g(x, \xi ^x_{\tau _1, s}) + \nabla _{y} g(x', \xi ^{x'}_{\tau _2, s}) \xi ^{x'}_{\tau _2, s, x_i} \\&\qquad - \nabla _{y} g(x, \xi ^x_{\tau _1, s}) \xi ^x_{\tau _1, s, x_i}, \xi ^{x'}_{\tau _2, s, x_i}-\xi ^x_{\tau _1, s, x_i}\rangle \nonumber \\&\qquad + \frac{1}{\epsilon } {{\mathbf {E}}}\Vert D_{x_i} \alpha _2(x', \xi ^{x'}_{\tau _2, s}) - D_{x_i} \alpha _2(x, \xi ^x_{\tau _1, s}) + \nabla _{y} \alpha _2(x', \xi ^{x'}_{\tau _2, s}) \xi ^{x'}_{\tau _2, s, x_i} \\&\qquad - \nabla _{y} \alpha _2(x, \xi ^x_{\tau _1, s}) \xi ^x_{\tau _1, s, x_i}\Vert ^2 \nonumber \\&\quad \le \frac{2}{\epsilon } {{\mathbf {E}}}\langle D_{x_i} g(x', \xi ^{x'}_{\tau _2, s}) - D_{x_i} g(x', \xi ^x_{\tau _1, s}) + \nabla _{y} g(x', \xi ^{x'}_{\tau _2, s})\\&\qquad (\xi ^{x'}_{\tau _2, s, x_i} -\xi ^x_{\tau _1, s, x_i}), \xi ^{x'}_{\tau _2, s, x_i}-\xi ^x_{\tau _1, s, x_i}\rangle \nonumber \\&\qquad + \frac{2}{\epsilon } {{\mathbf {E}}}\langle D_{x_i} g(x', \xi ^{x}_{\tau _1, s}) - D_{x_i} g(x, \xi ^x_{\tau _1, s}) + \big (\nabla _{y} g(x', \xi ^{x'}_{\tau _2, s}) \\&\qquad - \nabla _{y} g(x, \xi ^{x}_{\tau _1, s})\big ) \xi ^x_{\tau _1, s, x_i}, \xi ^{x'}_{\tau _2, s, x_i}-\xi ^x_{\tau _1, s, x_i}\rangle \nonumber \\&\qquad + \frac{3}{\epsilon } {{\mathbf {E}}}\Vert D_{x_i} \alpha _2(x', \xi ^{x'}_{\tau _2, s}) - D_{x_i} \alpha _2(x, \xi ^x_{\tau _1, s})\Vert ^2\\&\qquad + \frac{3}{\epsilon } {{\mathbf {E}}}\Vert \nabla _{y} \alpha _2(x', \xi ^{x'}_{\tau _2, s}) (\xi ^{x'}_{\tau _2, s, x_i} - \xi ^x_{\tau _1, s, x_i})\Vert ^2 \nonumber \\&\qquad + \frac{3}{\epsilon } {{\mathbf {E}}}\Vert \big (\nabla _{y} \alpha _2(x', \xi ^{x'}_{\tau _2, s}) - \nabla _{y} \alpha _2(x, \xi ^x_{\tau _1, s})\big ) \xi ^x_{\tau _1, s, x_i}\Vert ^2 \nonumber \\&\quad \le -\frac{2\lambda }{\epsilon } {{\mathbf {E}}}|\xi ^{x'}_{\tau _2, s, x_i} - \xi ^{x}_{\tau _1, s, x_i}|^2 + \frac{C}{\epsilon } {{\mathbf {E}}}\big (|\xi ^{x'}_{\tau _2, s} - \xi ^x_{\tau _1, s}||\xi ^{x'}_{\tau _2, s, x_i}-\xi ^x_{\tau _1, s, x_i}|\big )\\&\qquad + \frac{C}{\epsilon } {{\mathbf {E}}}\big (|x' - x||\xi ^{x'}_{\tau _2, s, x_i}-\xi ^x_{\tau _1, s, x_i}|\big ) \nonumber \\&\qquad +\frac{C}{\epsilon } {{\mathbf {E}}}\big [\big (|x'-x|+ |\xi ^{x'}_{\tau _2, s}-\xi ^x_{\tau _1, s}|\big )|\xi ^x_{\tau _1, s, x_i}||\xi ^{x'}_{\tau _2, s, x_i}-\xi ^x_{\tau _1, s, x_i}|\big ]\\&\qquad + \frac{C}{\epsilon } |x-x'|^2+\frac{C}{\epsilon }{{\mathbf {E}}}|\xi ^{x'}_{\tau _2, s}-\xi ^x_{\tau _1, s}|^2 \nonumber \\&\qquad + \frac{C}{\epsilon } {{\mathbf {E}}}\big [(|x'-x| + |\xi ^{x'}_{\tau _2, s}-\xi ^x_{\tau _1, s}|\big )^2|\xi ^x_{\tau _1, s, x_i}|^2\big ] \nonumber \\&\quad \le -\frac{\lambda }{\epsilon } {{\mathbf {E}}}|\xi ^{x'}_{\tau _2, s, x_i} - \xi ^{x}_{\tau _1, s, x_i}|^2 + \frac{C}{\epsilon }\Big (|x' - x|^2 + {{\mathbf {E}}}|\xi ^{x'}_{\tau _2, s} - \xi ^{x}_{\tau _1, s}|^2 \\&\qquad + ({{\mathbf {E}}}|\xi ^{x'}_{\tau _2, s} - \xi ^{x}_{\tau _1, s}|^4)^{\frac{1}{2}}\Big ) \nonumber \\&\quad \le -\frac{\lambda }{\epsilon } {{\mathbf {E}}}|\xi ^{x'}_{\tau _2, s, x_i} - \xi ^{x}_{\tau _1, s, x_i}|^2 + \frac{C}{\epsilon } \Big [(1 + |x|^2+|y|^2) e^{-\frac{\lambda (s-\tau _2)}{\epsilon }} + |x' - x|^2\Big ]\,, \end{aligned}$$

    and thus

    $$\begin{aligned} {{\mathbf {E}}}|\xi ^{x'}_{\tau _2, s, x_i} - \xi ^{x}_{\tau _1, s, x_i}|^2 \le Ce^{-\frac{\lambda (s-\tau _2)}{\epsilon }} \Big [ 1 + \frac{s - \tau _2}{\epsilon } (1 + |x|^2+|y|^2)\Big ] + C |x' - x|^2\,. \end{aligned}$$

\(\square \)

The above results allow us to define the stationary process \(\xi _s^x=\xi _{-\infty ,s}^{x}\) with \(\xi _{s}^{x}\sim \rho _{x}(y)\,dy\) where \(\rho _{x}\) is the stationary probability density with respect to Lebesgue measure, and also the derivative process \(\xi ^x_{s, x_i}\) for \(1 \le i \le k\), satisfying that \(\forall f \in C^1_b({\mathbb {R}}^k\times {\mathbb {R}}^l)\) and \({\widetilde{f}}(x) = {{\mathbf {E}}}(f(x, \xi _s^x)) = \int _{{\mathbb {R}}^l} f(x,y) \rho _x(y) dy\), it holds

$$\begin{aligned} D_{x_i} {\widetilde{f}}(x) = {{\mathbf {E}}}\big (D_{x_i}f(x, \xi _s^x) + \nabla _{y}f(x,\xi _s^x)\xi ^x_{s,x_i}\big )\,. \end{aligned}$$
(8.2)

The processes \(\xi ^x_s\) and \(\xi ^x_{s, x_i}\) have the following properties:

Lemma 8.3

Under Assumptions 1 and 2, there is a constant \(C>0\), independent of \(\epsilon \), x and y, such that \(\forall f \in C_b^1({\mathbb {R}}^l)\):

  1. 1.
    $$\begin{aligned} \Big | {{\mathbf {E}}}f(\xi ^x_{0,s}) - \int _{{\mathbb {R}}^l} f(y) \rho _x(y) dy\Big | \le \sup |f'| \Big (|x| + |y| + 1\Big ) e^{-\frac{\lambda s}{\epsilon }}\,. \end{aligned}$$
    (8.3)
  2. 2.
    $$\begin{aligned}&\Big | {{\mathbf {E}}}\Big (f(\xi ^x_{0,s})\xi ^x_{0,s,x_i}\Big ) -{{\mathbf {E}}}\Big (f(\xi ^x_{s})\xi ^x_{s,x_i}\Big ) \Big |\nonumber \\&\quad \le C\Big (\sup |f| + \sup |f'|\Big ) \Big (1 + |x| + |y|\Big ) e^{-\frac{\lambda s}{2\epsilon }}\,. \end{aligned}$$
    (8.4)

Proof

We only prove the second inequality, as the first one follows in a similar fashion. Using Lemmas 8.1 and 8.2, we readily conclude that

$$\begin{aligned}&\Big | {{\mathbf {E}}}\big (f(\xi ^x_{0,s})\xi ^x_{0,s,x_i}\big ) -{{\mathbf {E}}}\big (f(\xi ^x_{s})\xi ^x_{s,x_i}\big ) \Big | \nonumber \\&\quad \le \Big | {{\mathbf {E}}}\big [f(\xi ^x_{s})(\xi ^x_{0,s,x_i} -\xi ^x_{s,x_i})\big ]\Big | + \Big |{{\mathbf {E}}}\big [(f(\xi ^x_{0,s}) - f(\xi ^x_{s}))\xi ^x_{0, s,x_i}\big ] \Big | \nonumber \\&\quad \le C\big (\sup |f| + \sup |f'|\big ) \big (1 + |x| + |y|\big ) e^{-\frac{\lambda s}{2\epsilon }} \end{aligned}$$

\(\square \)

An analogous property for the stationary process \(\xi ^x_{s}\) is the following:

Lemma 8.4

Under Assumption 1 and 2, there exists constant \(C > 0\), independent of \(x, x'\), such that

  1. 1.

    For \(x \in {\mathbb {R}}^k\), \({{\mathbf {E}}}|\xi ^x_{s, x_i}|^4 \le C\).

  2. 2.

    For \(x , x'\in {\mathbb {R}}^k\), \({{\mathbf {E}}}|\xi ^{x'}_{s} - \xi ^x_{s}|^4 \le C |x - x'|^4\).

  3. 3.

    For \(x, x' \in {\mathbb {R}}^k\), \({{\mathbf {E}}}|\xi ^{x'}_{s, x_i} - \xi ^{x}_{s, x_i}|^2 \le C |x - x'|^2\).

Proof

The conclusions follow directly by letting \(\tau _1, \tau _2\rightarrow -\infty \) in Lemma 8.1 and 8.2. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hartmann, C., Schütte, C., Weber, M. et al. Importance sampling in path space for diffusion processes with slow-fast variables. Probab. Theory Relat. Fields 170, 177–228 (2018). https://doi.org/10.1007/s00440-017-0755-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-017-0755-3

Keywords

Mathematics Subject Classification

Navigation