Probability Theory and Related Fields

, Volume 170, Issue 1–2, pp 177–228 | Cite as

Importance sampling in path space for diffusion processes with slow-fast variables

  • Carsten Hartmann
  • Christof Schütte
  • Marcus Weber
  • Wei Zhang
Article

Abstract

Importance sampling is a widely used technique to reduce the variance of a Monte Carlo estimator by an appropriate change of measure. In this work, we study importance sampling in the framework of diffusion process and consider the change of measure which is realized by adding a control force to the original dynamics. For certain exponential type expectation, the corresponding control force of the optimal change of measure leads to a zero-variance estimator and is related to the solution of a Hamilton–Jacobi–Bellmann equation. We focus on certain diffusions with both slow and fast variables, and the main result is that we obtain an upper bound of the relative error for the importance sampling estimators with control obtained from the limiting dynamics. We demonstrate our approximation strategy with an illustrative numerical example.

Keywords

Importance sampling Hamilton–Jacobi–Bellmann equation Monte Carlo method Change of measure Rare events Diffusion process 

Mathematics Subject Classification

Primary 60C05 60J60 Secondary 60F15 

Notes

Acknowledgements

The authors acknowledge financial support by the DFG Research Center Matheon, the Einstein Center for Mathematics ECMath and the DFG-CRC 1114 “Scaling Cascades in Complex Systems”. Special thanks also go to anonymous referees whose valuable comments and criticism have helped to improve this paper.

References

  1. 1.
    Asmussen, S., Glynn, P.W.: Stochastic simulation: algorithms and analysis. Springer, New York (2007)MATHGoogle Scholar
  2. 2.
    Asmussen, S., Kroese, D.P.: Improved algorithms for rare event simulation with heavy tails. Adv. Appl. Prob. 38, 545–558 (2006)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bensoussan, A., Lions, J.-L., Papanicolaou, G.: Asymptotic analysis for periodic structures. Studies in mathematics and its applications, North-Holland (1978)Google Scholar
  4. 4.
    Berglund, N., Gentz, B.: Metastability in simple climate models: pathwise analysis of slowly driven Langevin equations. Stoch. Dyn. 02, 327–356 (2002)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Blanchet, J., Glynn, P.: Efficient rare-event simulation for the maximum of heavy-tailed random walks. Ann. Appl. Probab. 18, 1351–1378 (2008)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Boué, M., Dupuis, P.: A variational representation for certain functionals of Brownian motion. Ann. Probab. 26, 1641–1659 (1998)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Brooks, S.P.: Markov chain Monte Carlo method and its application. J. R. Stat. Soc. Ser D 47, 69–100 (1998)CrossRefGoogle Scholar
  8. 8.
    Cerrai, S.: Second order PDE’s in finite and infinite dimension: a probabilistic approach, no. 1762 in Lecture Notes in Mathematics, Springer, (2001)Google Scholar
  9. 9.
    Cerrai, S.: Averaging principle for systems of reaction-diffusion equations with polynomial nonlinearities perturbed by multiplicative noise. Siam J. Math. Anal. 43, 2482–2518 (2011)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Da Prato, G., Zabczyk, J.: Ergodicity for infinite dimensional systems, Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology. Cambridge University Press, (1996)Google Scholar
  11. 11.
    Da Prato, G., Zabczyk, J.: Second order partial differential equations in Hilbert spaces, London Mathematical Society Lecture Note Series. Cambridge University Press, London (2002)Google Scholar
  12. 12.
    Doucet, A., De Freitas, N., Gordon, N. (eds.): Sequential Monte Carlo methods in practice. Springer, New York (2001)Google Scholar
  13. 13.
    Duane, S., Kennedy, A.D., Pendleton, B.J., Roweth, D.: Hybrid Monte Carlo. Phys. Lett. B 195, 216–222 (1987)CrossRefGoogle Scholar
  14. 14.
    Dupuis, P., Spiliopoulos, K., Wang, H.: Rare event simulation for rough energy landscapes. In: Simulation Conference (WSC), Proceedings of the 2011 Winter, 2011, pp. 504–515Google Scholar
  15. 15.
    Dupuis, P., Spiliopoulos, K., Wang, H.: Importance sampling for multiscale diffusions. Multiscale Model. Simul. 10, 1–27 (2012)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Dupuis, P., Wang, H.: Importance sampling, large deviations, and differential games. Stoch. Stoch. Rep. 76, 481–508 (2004)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Dupuis, P., Wang, H.: Subsolutions of an Isaacs equation and efficient schemes for importance sampling. Math. Oper. Res. 32, 723–757 (2007)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Liu, W .E.D., Vanden-Eijnden, E.: Analysis of multiscale methods for stochastic differential equations. Comm. Pure Appl. Math. 58, 1544–1585 (2005)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Fleming, W.H., Soner, H.M.: Controlled Markov processes and viscosity solutions. Springer, New York (2006)MATHGoogle Scholar
  20. 20.
    Freidlin, M., Wentzell, A.: Random perturbations of dynamical systems, vol. 260 of Grundlehren der mathematischen Wissenschaften. Springer, Berlin (2012)Google Scholar
  21. 21.
    Friedman, A.: Partial differential equations of parabolic type. Prentice-Hall, Englewood Cliffs (1964)MATHGoogle Scholar
  22. 22.
    Givon, D.: Strong convergence rate for two-time-scale jump-diffusion stochastic differential systems. Multiscale Model. Simul. 6, 577–594 (2007)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Glasserman, P., Heidelberger, P., Shahabuddin, P.: Asymptotically optimal importance sampling and stratification for pricing path-dependent options. Math. Finance 9, 117–152 (1999)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Hartmann, C., Latorre, J., Pavliotis, G., Zhang, W.: Optimal control of multiscale systems using reduced-order models. J. Comput. Dyn. 1, 279–306 (2014)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109 (1970)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Hedges, L.O., Jack, R.L., Garrahan, J.P., Chandler, D.: Dynamic order-disorder in atomistic models of structural glass formers. Science 323, 1309–1313 (2009)CrossRefGoogle Scholar
  27. 27.
    Huang, C., Liu, D.: Strong convergence and speed up of nested stochastic simulation algorithm. Commun. Comput. Phys. 15, 1207–1236 (2014)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Jack, R.L., Sollich, P.: Effective interactions and large deviations in stochastic processes. Eur. Phys. J. Special Topics 224, 2351–2367 (2015)CrossRefGoogle Scholar
  29. 29.
    Karatzas, I., Shreve, S.E.: Brownian motion and stochastic calculus, 2nd edn. Springer, New York (1991)MATHGoogle Scholar
  30. 30.
    Khasminskii, R.: Principle of averaging for parabolic and elliptic differential equations and for Markov processes with small diffusion. Theory Probab. Appl. 8, 1–21 (1963)CrossRefGoogle Scholar
  31. 31.
    Krylov, N.: Controlled diffusion processes. Stochastic modelling and applied probability. Springer, Berlin (1980)Google Scholar
  32. 32.
    Latorre, J.C., Metzner, P., Hartmann, C., Schütte, C.: A structure-preserving numerical discretization of reversible diffusions. Commun. Math. Sci. 9, 1051–1072 (2010)MathSciNetMATHGoogle Scholar
  33. 33.
    Liu, D.: Strong convergence of principle of averaging for multiscale stochastic dynamical systems. Commun. Math. Sci. 8, 999–1020 (2010)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Liu, J .S.: Monte Carlo strategies in scientific computing, 2nd edn. Springer, New York (2008)MATHGoogle Scholar
  35. 35.
    Liu, J.S., Chen, R.: Sequential monte carlo methods for dynamic systems. J. Am. Statist. Assoc. 93, 1032–1044 (1998)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Majda, A., Franzke, C., Khouider, B.: An applied mathematics perspective on stochastic modelling for climate. Philos. Trans. A Math. Phys. Eng. Sci. 366, 2429–2455 (2008)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Øksendal, B.: Stochastic differential equations: an introduction with applications, 6th edn. Springer, Berlin (2010)MATHGoogle Scholar
  38. 38.
    Pavliotis, G., Stuart, A.: Multiscale methods: averaging and homogenization. Springer, Berlin (2008)MATHGoogle Scholar
  39. 39.
    Prinz, J.-H., Wu, H., Sarich, M., Keller, B., Senne, M., Held, M., Chodera, J. D., Schütte, C., Noé, F.: Markov models of molecular kinetics: Generation and validation. J. Chem. Phys.,134 (2011)Google Scholar
  40. 40.
    Schütte, C., Fischer, A., Huisinga, W., Deuflhard, P.: A direct approach to conformational dynamics based on hybrid Monte Carlo. J. Comput. Phys. 151, 146–168 (1999)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Spiliopoulos, K.: Large deviations and importance sampling for systems of slow-fast motion. Appl. Math. Optim. 67, 123–161 (2013)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Spiliopoulos, K.: Nonasymptotic performance analysis of importance sampling schemes for small noise diffusions. J. Appl. Probab. 52, 797–810 (2015)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Spiliopoulos, K.: Rare event simulation for multiscale diffusions in random environments. Multiscale Model. Simul. 13, 1290–1311 (2015)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Spiliopoulos, K., Dupuis, P., Zhou, X.: Escaping from an attractor: Importance sampling and rest points, part I. Ann. Appl. Probab. 25, 2909–2958 (2015)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Vanden-Eijnden, E., Weare, J.: Rare event simulation of small noise diffusions. Comm. Pure Appl. Math. 65, 1770–1803 (2012)MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Zhang, W., Wang, H., Hartmann, C., Weber, M., Schütte, C.: Applications of the cross-entropy method to importance sampling and optimal control of diffusions. SIAM J. Sci. Comput. 36, A2654–A2672 (2014)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Carsten Hartmann
    • 1
  • Christof Schütte
    • 2
  • Marcus Weber
    • 2
  • Wei Zhang
    • 1
  1. 1.Institute of MathematicsFreie Universität BerlinBerlinGermany
  2. 2.Zuse Institute BerlinBerlinGermany

Personalised recommendations