Advertisement

Probability Theory and Related Fields

, Volume 169, Issue 3–4, pp 871–899 | Cite as

Extinction time for the contact process on general graphs

  • Bruno SchapiraEmail author
  • Daniel Valesin
Article
  • 167 Downloads

Abstract

We consider the contact process on finite and connected graphs and study the behavior of the extinction time, that is, the amount of time that it takes for the infection to disappear in the process started from full occupancy. We prove, without any restriction on the graph G, that if the infection rate \(\lambda \) is larger than the critical rate of the one-dimensional process, then the extinction time grows faster than \(\exp \{|G|/(\log |G|)^\kappa \}\) for any constant \(\kappa > 1\), where |G| denotes the number of vertices of G. Also for general graphs, we show that the extinction time divided by its expectation converges in distribution, as the number of vertices tends to infinity, to the exponential distribution with parameter 1. These results complement earlier work of Mountford, Mourrat, Valesin and Yao, in which only graphs of bounded degrees were considered, and the extinction time was shown to grow exponentially in n; here we also provide a simpler proof of this fact.

Mathematics Subject Classification

60K35 82C22 

References

  1. 1.
    Berger, N., Borgs, C., Chayes, J.T., Saberi, A.: On the spread of viruses on the internet. In: Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms, pp. 301–310. Society for Industrial and Applied Mathematics (2005)Google Scholar
  2. 2.
    Can, V.H.: Metastability for the contact process on the preferential attachment graph. arXiv:1502.05633 (arXiv preprint) (2015)
  3. 3.
    Can, V.H., Schapira, B.: Metastability for the contact process on the configuration model with infinite mean degree. Electron. J. Probab 20, 1–22 (2015)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Cassandro, M., Galves, A., Olivieri, E., Vares, M.E.: Metastable behavior of stochastic dynamics: a pathwise approach. J. Stat. Phys. 35(5–6), 603–634 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Chatterjee, S., Durrett, R.: Contact processes on random graphs with power law degree distributions have critical value 0. Ann. Probab. 37(6), 2332–2356 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Chen, J.W.: The contact process on a finite system in higher dimensions. Chin. J. Contemp. Math. 15(1), 13–20 (1994)MathSciNetGoogle Scholar
  7. 7.
    Cranston, M., Mountford, T., Mourrat, J.C., Valesin, D.: The contact process on finite trees revisited. ALEA 11(2), 385408 (2014)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Durrett, R.: Random Graph Dynamics, vol. 200, no. 7. Cambridge University Press, Cambridge (2007)Google Scholar
  9. 9.
    Durrett, R., Liu, X.F.: The contact process on a finite set. Ann. Probab. 16(3), 1158–1173 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Durrett, R., Schonmann, R.H.: Large deviations for the contact process and two dimensional percolation. Probab. Theory Relat. Fields 77(4), 583–603 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Durrett, R., Schonmann, R.H.: The contact process on a finite set. II. Ann. Probab. 16(4), 1570–1583 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Kuczek, T.: The central limit theorem for the right edge of supercritical oriented percolation. Ann. Probab. 17(4), 1322–1332 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Lalley, S., Su, W.: Contact processes on random regular graphs. arXiv:1502.07421 (arXiv preprint) (2015)
  14. 14.
    Liggett, T.: Interacting Particle Systems, vol. 276. Springer, Berlin (2012)zbMATHGoogle Scholar
  15. 15.
    Liggett, T.M.: Stochastic Interacting Systems: Contact, Voter and Exclusion Processes, vol. 324. Springer, Berlin (2013)zbMATHGoogle Scholar
  16. 16.
    Mountford, T.: A metastable result for the finite multidimensional contact process. Can. Math. Bull. 36(2), 216–226 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Mountford, T.: Existence of a constant for finite system extinction. J. Stat. Phys. 96(5–6), 1331–1341 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Mountford, T., Mourrat, J.C., Valesin, D., Yao, Q.: Exponential extinction time of the contact process on finite graphs. http://perso.ens-lyon.fr/jean-christophe.mourrat/contactexp (Preprint) (2012)
  19. 19.
    Mountford, T., Valesin, D., Yao, Q.: Metastable densities for the contact process on power law random graphs. Electron. J. Probab 18(103), 1–36 (2013)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Mourrat, J.C., Valesin, D.: Phase transition of the contact process on random regular graphs. arXiv:1405.0865 (arXiv preprint) (2014)
  21. 21.
    Schonmann, R.H.: Metastability for the contact process. J. Stat. Phys. 41(3), 445–464 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Stacey, A.: The contact process on finite homogeneous trees. Probab. Theory Relat. Fields 121(4), 551–576 (2001)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Aix-Marseille Université, CNRSMarseilleFrance
  2. 2.University of GroningenGroningenThe Netherlands

Personalised recommendations