Advertisement

Probability Theory and Related Fields

, Volume 167, Issue 3–4, pp 1165–1214 | Cite as

The total external length of the evolving Kingman coalescent

  • Iulia Dahmer
  • Götz Kersting
Article

Abstract

The evolving Kingman coalescent is the tree-valued process which records the time evolution undergone by the genealogies of Moran populations. We consider the associated process of total external tree length of the evolving Kingman coalescent and its asymptotic behaviour when the number of leaves of the tree tends to infinity. We show that on the time-scale of the Moran model slowed down by a factor equal to the population size, the (centred and rescaled) external length process converges to a stationary Gaussian process with almost surely continuous paths and covariance function \(c(s,t)=\Big ( \frac{2}{2+|s-t|} \Big )^2\). A key role in the evolution of the external length is played by the internal lengths of finite orders in the coalescent at a fixed time which behave asymptotically in a multivariate Gaussian manner [see Dahmer and Kersting (Ann Appl Probab 25(3):1325–1348, 2015)]. A coupling of the Moran model with a critical branching process is used. We also derive a central limit result for normally distributed sums endowed with independent random coefficients.

Keywords

Evolving Kingman coalescent External length process  Gaussian process Coupling Critical branching process 

Mathematics Subject Classification

60K35 60F05 60J10 

Notes

Acknowledgments

We thank the referees for very careful reading and for their hints which led to an improvement of the paper.

References

  1. 1.
    Athreya, K.B., Ney, P.E.: Branching Processes. Springer, Berlin (1972)CrossRefzbMATHGoogle Scholar
  2. 2.
    Berestycki, J., Berestycki, N., Limic, V.: Asymptotic sampling formulae for Lambda-coalescents. To appear in Ann. Inst. H. Poincaré. arXiv:1201.6512 (2012)
  3. 3.
    Berestycki, J., Berestycki, N., Schweinsberg, J.: Beta-coalescents and continuous stable random trees. Ann. Probab. 35, 1835–1887 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Berestycki, J., Berestycki, N., Schweinsberg, J.: Small time properties of Beta-coalescents. Ann. Inst. H. Poincaré 44, 214–238 (2008)CrossRefzbMATHGoogle Scholar
  5. 5.
    Dahmer, I., Kersting, G.: The internal branch lengths of the Kingman coalescent. Ann. Appl. Probab. 25(3), 1325–1348 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dahmer, I., Kersting, G., Wakolbinger, A.: The total external branch length of Beta-coalescents. Comb. Probab. Comput. 23(06), 1010–1027 (2014). (Special Issue on Analysis of Algorithms)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dahmer, I., Knobloch, R., Wakolbinger, A.: The Kingman tree length process has infinite quadratic variation. Electron. Commun. Probab. 19, 1–12 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Depperschmidt, A., Greven, A., Pfaffelhuber, P.: Tree-valued Fleming–Viot dynamics with mutation and selection. Ann. Appl. Probab. 22(6), 2560–2615 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Dhersin, J.-S., Yuan, L.: Asympotic behavior of the total length of external branches for Beta-coalescents. Adv. Appl. Probab. 47(3), 693–714 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Drmota, M., Iksanov, A., Möhle, M., Rösler, U.: Asymptotic results about the total branch length of the Bolthausen–Sznitman coalescent. Stoch. Proc. Appl. 117, 1404–1421 (2007)CrossRefzbMATHGoogle Scholar
  11. 11.
    Durrett, R.: Probability Models for DNA Sequence Evolution, 2nd edn. Springer, New York (2008)CrossRefzbMATHGoogle Scholar
  12. 12.
    Ethier, S.N., Kurtz, T.G.: Markov Processes. Characterization and Convergence. Wiley, New York (1986)CrossRefzbMATHGoogle Scholar
  13. 13.
    Fu, Y.X.: Statistical properties of segregating sites. Theor. Pop. Biol. 48, 172–197 (1995)CrossRefzbMATHGoogle Scholar
  14. 14.
    Greven, A., Pfaffelhuber, P., Winter, A.: Convergence in distribution of random metric measure spaces: (Lambda-coalescent measure trees). Probab. Theory Relat. Fields 145(1), 285–322 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Greven, A., Pfaffelhuber, P., Winter, A.: Tree-valued resampling dynamics. Martingale problems and applications. Probab. Theory Relat. Fields 155, 789–838 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Gufler, S.: Lookdown representation for tree-valued Fleming–Viot processes. arXiv:1404.3682 (2014)
  17. 17.
    Iksanov, A., Möhle, M.: A probabilistic proof of a weak limit law for the number of cuts needed to isolate the root of a random recursive tree. Electron. Commun. Probab. 12, 28–35 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Janson, S., Kersting, G.: On the total external length of the Kingman coalescent. Electron. J. Probab. 16, 2203–2218 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kersting, G.: The asymptotic distribution of the length of Beta-coalescent trees. Ann. Appl. Probab. 22, 2086–2107 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Kersting, G., Schweinsberg, J., Wakolbinger, A.: The evolving beta coalescent. Electron. J. Probab. 19, 1–27 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Möhle, M.: Asymptotic results for coalescent processes without proper frequencies and applications to the two-parameter Poisson-Dirichlet coalescent. Stoch. Process. Appl. 120, 2159–2173 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Marcus, M.B., Rosen, J.: Markov Processes. Gaussian Processes and Local Times. Cambridge University Press, Cambridge (2006)CrossRefzbMATHGoogle Scholar
  23. 23.
    Pfaffelhuber, P., Wakolbinger, A.: The process of most recent common ancestors in an evolving coalescent. Stoch. Process. Appl. 116, 1836–1859 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Pfaffelhuber, P., Wakolbinger, A., Weisshaupt, H.: The tree length of an evolving coalescent. Probab. Theory Relat. Fields 151, 529–557 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Schweinsberg, J.: Dynamics of the evolving Bolthausen–Sznitman coalescent. Electron. J. Probab. 91, 1–50 (2012)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institut für MathematikGoethe-Universität FrankfurtFrankfurt am MainGermany

Personalised recommendations