Probability Theory and Related Fields

, Volume 165, Issue 3–4, pp 509–540 | Cite as

Planar stochastic hyperbolic triangulations

  • Nicolas CurienEmail author


Pursuing the approach of Angel and Ray (Ann Probab, 2015) we introduce and study a family of random infinite triangulations of the full-plane that satisfy a natural spatial Markov property. These new random lattices naturally generalize Angel and Schramm’s uniform infinite planar triangulation (UIPT) and are hyperbolic in flavor. We prove that they exhibit a sharp exponential volume growth, are non-Liouville, and that the simple random walk on them has positive speed almost surely. We conjecture that these infinite triangulations are the local limits of uniform triangulations whose genus is proportional to the size.

Graphical abstract

An artistic representation of a random (3-connected) triangulation of the plane with hyperbolic flavor.

Mathematics Subject Classification

05C80 05C81 60J10 



I am grateful to Omer Angel, Itai Benjamini, Guillaume Chapuy and Gourab Ray for useful discussions on and around Conjecture 1. Thanks also go to two anonymous referees for a careful reading of this paper.


  1. 1.
    Addario-Berry, L., Reed, B.A.: Ballot theorems, old and new. In: Horizons of combinatorics, vol. 17 of Bolyai Soc. Math. Stud., pp. 9–35. Springer, Berlin (2008)Google Scholar
  2. 2.
    Aldous, D., Lyons, R.: Processes on unimodular random networks. Electron. J. Probab. 12(54), 1454–1508 (2007). (electronic)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Aldous, D., Steele, J.M.: The objective method: probabilistic combinatorial optimization and local weak convergence. In: Probability on discrete structures, vol. 110 of Encyclopaedia Math. Sci., pp. 1–72. Springer, Berlin (2004)Google Scholar
  4. 4.
    Angel, O.: Growth and percolation on the uniform infinite planar triangulation. Geom. Funct. Anal. 13, 935–974 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Angel, O., Chapuy, G., Curien, N., Ray, G.G.: The local limit of unicellular maps in high genus. Electron. Commun. Probab. 18, 1–8 (2013)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Angel, O., Curien, N.: Percolations on infinite random maps, half-plane models. Ann. Inst. H. Poincaré Probab. Statist. 51, 405–431 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Angel, O., Nachmias, A., Ray, G.: Random walks on stochastic hyperbolic half planar triangulations (2014). arXiv:1408.4196
  8. 8.
    Angel, O., Ray, G.: Classification of half planar maps. Ann. Probab. 43(3), 1315–1349 (2015)Google Scholar
  9. 9.
    Angel, O., Schramm, O.: Uniform infinite planar triangulation. Comm. Math. Phys. 241, 191–213 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Benjamini, I.: Coarse geometry and randomness. vol. 2100 of Lecture Notes in Mathematics, Springer, Cham (2013) [Saint-Flour Probability Summer School]Google Scholar
  11. 11.
    Benjamini, I., Curien, N.: Ergodic theory on stationary random graphs. Electron. J. Probab. 17, 1–20 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Benjamini, I., Curien, N.: Simple random walk on the uniform infinite planar quadrangulation: subdiffusivity via pioneer points. Geom. Funct. Anal. 23, 501–531 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Benjamini, I., Curien, N., Georgakopoulos, A.: The Liouville and the intersection properties are equivalent for planar graphs. Electron. Commun. Probab. 17, 1–5 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Benjamini, I., Paquette, E., Pfeffer, J.: Anchored expansion, speed, and the hyperbolic poisson voronoi tessellation (2014). arXiv:1409.4312
  15. 15.
    Benjamini, I., Schramm, O.: Recurrence of distributional limits of finite planar graphs. Electron. J. Probab. 6(23), 13 (2001). (electronic)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Bertoin, J., Doney, R.A.: On conditioning a random walk to stay nonnegative. Ann. Probab. 22, 2152–2167 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Björnberg, J.E., Stefansson, S.O.: Recurrence of bipartite planar maps. Electron. J. Probab. 19, 1–40 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Chassaing, P., Durhuus, B.: Local limit of labeled trees and expected volume growth in a random quadrangulation. Ann. Probab. 34, 879–917 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Curien, N.: A glimpse of the conformal structure of random planar maps. Commun. Math. Phys. 333, 1417–1463 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Curien, N., Le Gall, J.-F.: The Brownian plane. J. Theor. Probab. 27, 1249–1291 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Curien, N., Le Gall, J.-F.: Scaling limits for the peeling process on random maps (2014). arXiv:1412.5509
  22. 22.
    Curien, N., Ménard, L., Miermont, G.: A view from infinity of the uniform infinite planar quadrangulation. Lat. Am. J. Probab. Math. Stat. 10, 45–88 (2013)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Derriennic, Y.: Quelques applications du théorème ergodique sous-additif. In: Conference on Random Walks (Kleebach, 1979) (French), vol. 74 of Astérisque, pp. 183–201. Soc. Math. France, Paris 4 (1980)Google Scholar
  24. 24.
    Gamburd, A.: Poisson-dirichlet distribution for random belyi surfaces. Ann. Probab. 34, 1827–1848 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Goulden, I.P., Jackson, D.M.: Combinatorial enumeration. A Wiley-Interscience Publication, New York (1983). With a foreword by Gian-Carlo Rota, Wiley-Interscience Series in Discrete MathematicszbMATHGoogle Scholar
  26. 26.
    Goulden, I.P., Jackson, D.M.: The KP hierarchy, branched covers, and triangulations. Adv. Math. 219, 932–951 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Gurel-Gurevich, O., Nachmias, A.: Recurrence of planar graph limits. Ann. Maths 177, 761–781 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Guth, L., Parlier, H., Young, R.: Pants decompositions of random surfaces. Geom. Funct. Anal. 21, 1069–1090 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Krikun, M.: Local structure of random quadrangulations. arXiv:0512304
  30. 30.
    Le Gall, J.-F.: Uniqueness and universality of the Brownian map. Ann. Probab. 41, 2880–2960 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Le Gall, J.-F., Ménard, L.: Scaling limits for the uniform infinite quadrangulation. Ill. J. Math. 54, 1163–1203 (2012)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Lyons, R., Schramm, O.: Indistinguishability of percolation clusters. Ann. Probab. 27, 1809–1836 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Ménard, L., Nolin, P.: Percolation on uniform infinite planar maps. Electron. J. Probab. 19, 1–27 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Miermont, G.: The Brownian map is the scaling limit of uniform random plane quadrangulations. Acta Math. 210, 319–401 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Ray, G.: Geometry and percolation on half planar triangulations. Electron. J. Probab. 19, 1–28 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Thomassen, C.: Isoperimetric inequalities and transient random walks on graphs. Ann. Probab. 20, 1592–1600 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Virág, B.: Anchored expansion and random walk. Geom. Funct. Anal. 10, 1588–1605 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Watabiki, Y.: Construction of non-critical string field theory by transfer matrix formalism in dynamical triangulation. Nuclear Phys. B 441, 119–163 (1995)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.CNRS and Université Paris 6ParisFrance

Personalised recommendations