Probability Theory and Related Fields

, Volume 164, Issue 1–2, pp 401–458 | Cite as

The fixed points of the multivariate smoothing transform

  • Sebastian Mentemeier


Let \((\mathbf {T}_1, \mathbf {T}_2, \ldots )\) be a sequence of random \(d\times d\) matrices with nonnegative entries, and let Q be a random vector with nonnegative entries. Consider random vectors \(X\) with nonnegative entries, satisfying
$$\begin{aligned} X\mathop {=}\limits ^{{\mathcal {L}}}\sum _{i \ge 1} \mathbf {T}_i X_i + Q, \end{aligned}$$
where \(\mathop {=}\limits ^{{\mathcal {L}}}\) denotes equality of the corresponding laws, \((X_i)_{i \ge 1}\) are i.i.d. copies of \(X\) and independent of \((Q, \mathbf {T}_1, \mathbf {T}_2, \ldots )\). For \(d=1\), this equation, known as fixed point equation of the smoothing transform, has been intensively studied. Under assumptions similar to the one-dimensional case, we obtain a complete characterization of all solutions \(X\) to (*) in the non-critical case, and existence results in the critical case.


Smoothing transform Markov random walks General branching processes Multivariate stable laws Multitype branching random walk  Choquet–Deny lemma Weighted branching 

List of symbols

\(\mathbf {1}, \tilde{\mathbf {1}}\)

\(\mathbf {1}=(1, \ldots ,1)^\top \in {{\mathbb {R}}^d_\ge }\), \(\tilde{\mathbf {1}}=d^{-1/2} \mathbf {1}\in {\mathbb {S}}_\ge \)

\(\mathop {=}\limits ^{{\mathcal {L}}}\)

Same law

\(\mathrm {int}\left( A\right) \)

Topological interior of the set \(A\)

\(\left[ \cdot \right] _{v}\)

Shift operator in \(\mathbb {V}\), see (4.1)

\(\alpha \)-Regular

See Definition 2.1.

\({\mathfrak {B}}_n\)

Filtration, \({\mathfrak {B}}_n=\sigma \Bigl ((T(v))_{\left| {v} \right| <n} \Bigr )\)

\( {\mathfrak {B}}_{{\mathcal {I}}_{t}^u} \)

\({\mathfrak {B}}_{{\mathcal {I}}_{t}^u} := \sigma \left( U(\emptyset ), \{ T(v) \ : \ v \text { has no ancestor in } {\mathcal {I}}_{t}^u \}\right) \)


Condition imposed on the supp of \(\mu \), see Definition 1.1

\(D, {D_{L,s}}\)

\(D(x) := \frac{1-{\phi }(x)}{H^\alpha (x)}\), \({D_{L,s}}(u,t) = \frac{1- {\phi }(e^{s+t}u)}{H^\alpha (e^tu) e^{\alpha s}L(e^s)}\)

\( \mathbb {E}^\alpha _u\)

Expectation symbol of \(\mathbb {P}^\alpha _u\), see (3.4).

\( \mathcal {E}_{\alpha ,c}\)

Extremal points of \(H_{\alpha ,c}^K\), see Lemma 10.5


\(H^s(x) = \int _{{\mathbb {S}}_\ge } \left\langle x,y \right\rangle ^s \, \nu ^{s}(dy)\) for all \(x \in {{\mathbb {R}}^d_\ge }\). It is a \(s\)-homogeneous function, i.e. \(H^s(x)=\left| {x} \right| ^s H^s(x/\left| {x} \right| )\) and satisfies \((P_*^{s}H^s)(u)=k(s) H^s(u)\), \(u \in {\mathbb {S}}_\ge \)

\(I_\mu \)

\(I_\mu = \{ s \ge 0 \ : \ \mathbb {E}\left\| {\mathbf {M}} \right\| ^s < \infty \}\)

\(\iota (\mathbf{a})\)

\(\iota (\mathbf{a}) := \inf \{ x \in {\mathbb {S}}_\ge \ : \ \left| {\mathbf{a}x} \right| \}\)

\( {\mathcal {I}}_{t}^u \)

Stopping line, \({\mathcal {I}}_{t}^u:=\{ v \in \mathbb {V}\ : \ S^u(v)> t \text { and } S^u(v|k) \le t \, \forall \, k<\left| {v} \right| \}\)

\({\mathcal {J}}_\alpha ^K\)

See Definition 9.4


Dominant eigenvalue of \(P^{s}\) and \(P_*^{s}\) satisfies \(m(s)=\mathbb {E}N k(s)\)


\(K_C = \left( \min _{y \in C} \min _i y_i \right) \) for compact \(C \subset \mathrm {int}\left( {\mathbb {S}}_\ge \right) \)

\( \mathbf{L}(v)\)

Recursively defined by \(\mathbf{L}(\emptyset )= \mathbf{Id}\) and \(\mathbf{L}(vi)=\mathbf{L}(v) \mathbf {T}_i(v)\)

\(L\)-\(\alpha \)-elementary

See Definition 2.1

\(\lambda _\mathbf{a}\)

Perron–Frobenius eigenvalue of \(\mathbf{a}\in \mathrm {int}\left( {\mathcal {M}}_\ge \right) \)


Disintegration, see Definition 7.2

\({\mathcal {M}}_\ge \)

Set \(M(d \times d, {\mathbb {R}}_\ge )\) of nonnegative \(d\times d\) matrices


\(m(s) = \mathbb {E}N \lim _{n \rightarrow \infty } \left( \mathbb {E}\left\| {\mathbf {M}_{1} \cdots \mathbf {M}_{n}} \right\| ^s \right) ^{1/n}\), where \((\mathbf {M}_{i})_{i \in {\mathbb {N}}}\) are i.i.d. with law \(\mu \)

\( (\mathbf {M}_n)_{n \in {\mathbb {N}}} \)

Sequence of random matrices (i.i.d. with law \(\mu \) under \(\mathbb {P}\)) c.f. (3.4)

\(\mu \)

Law on \({\mathcal {M}}_\ge \), defined by \(\int \! f(\mathbf{a}) \mu (d\mathbf{a}) \!:=\! (\mathbb {E}N)^{-1} \, \mathbb {E}\left( \sum _{i=1}^N f(\mathbf {T}_i)\right) \!.\)

\({\mathbb {N}}, {\mathbb {N}}_0\)

\({\mathbb {N}}= {\mathbb {N}}_0\! \setminus \! \{0\}\).

\(\nu ^{s}\)

Probability measure on \({\mathbb {S}}_\ge \), satisfy \((P^{s})' \nu ^{s}= k(s) \nu ^{s}\)

\(\mathbb {P}_u\)

Notation for initial states, \({\mathbb {P}}_{u} \left( {U(\emptyset )=u, U_0=u, S_0=0} \right) =1\)

\(P^{s}\), \(P_*^{s}\)

Operators on \({\mathcal {C}}^{}\left( {\mathbb {S}}_\ge \right) \) defined in (1.13) resp. (3.1)

\(\varvec{\Pi }_n\)

\(\varvec{\Pi }_n := \mathbf {M}_n^\top \dots \mathbf {M}_1^\top \)

\( \mathbb {P}^\alpha _u\)

Exponentially shifted measure, see (3.4).

\({\mathbb {R}}_\ge , {\mathbb {R}}_>\)

\({\mathbb {R}}_\ge =[0,\infty )\), \({\mathbb {R}}_>=(0,\infty )\)

\(\varrho \)

Stationary law of \((U(t), R(t))\) under \(\mathbb {P}_u^\alpha \), see Theorem 4.9

\(S^u(v), S_n, S(t)\)

\(S(v)= - \log \left| {\mathbf{L}(v)^\top u} \right| \), \(S_n := - \log \left| {\varvec{\Pi }_n U_0} \right| \), \(S(t)=S_{\tau _t}\)

\({\mathbb {S}}_\ge \)

\({\mathbb {S}}_\ge = {\mathbb {S}}\cap {{\mathbb {R}}^d_\ge }\) intersection of the unit sphere and the nonnegative cone in \({\mathbb {R}}^d\)

\(\tau _t\)

\(\tau _t:= \inf \{n : S_n >t\}\)

\(\mathbb {V}\)

\(\mathbb {V}=\bigcup _{n=0}^\infty {\mathbb {N}}^n \)

\(U^u(v), U_n, U(t)\)

\(U(v)= \mathbf{L}(v)^\top \cdot u\), \(U_n= \varvec{\Pi }_n \cdot U_0\), \(U(t)=U_{\tau _t}\)


Perron–Frobenius eigenvalue of \(\mathbf{a}\in \mathrm {int}\left( {\mathcal {M}}_\ge \right) \)

\(W_n, W\)

Martingale, see (1.14), \(W_n \rightarrow W\), \(W_0(u)=H^{\alpha }(u)\)


Particular fixed point of \({\mathcal {S}}_Q\), see Lemma 5.2

\(W_{{\mathcal {I}}_{t}^u}^f\)

\( W_{{\mathcal {I}}_{t}^u}^f = \sum _{v \in {\mathcal {I}}_{t}^u} H^\alpha (\mathbf{L}(v)^\top U(v)) \, f(U(v), S(v)-t),\)


\(Z(u):=- \log M(u)\)

Mathematics Subject Classification

60G44 60E05 60B20 60B15 



The major part of this work was done while the author held a position at the Institute of Mathematical Statistics, University of Münster, which was supported by Deutsche Forschungsgemeinschaft via SFB 878. An earlier version of a part of these results has been published within the author’s Ph.D. thesis [60], written under the supervision of Gerold Alsmeyer, Münster, to whom I’d like to express my gratitude; as well as to Dariusz Buraczewski, Ewa Damek, Yves Guivarc’h, Konrad Kolesko, Daniel Matthes and Matthias Meiners for very helpful discussions on the subject. The author is grateful to the referees for a very careful reading of the paper and many helpful comments, that led to an improvement of the presentation.


  1. 1.
    Aidekon, E., Shi, Z.: The Seneta–Heyde scaling for the branching random walk. Ann. Probab. 42(3), 959–993 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Alsmeyer, G., Biggins, J., Meiners, M.: The functional equation of the smoothing transform. Ann. Probab. 40(5), 2069–2105 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Alsmeyer, G., Damek, E., Mentemeier, S.: Precise tail index of fixed points of the two-sided smoothing transform. In: Random Matrices and Iterated Random Functions, Springer Proceedings of Mathematics and Statistics, vol. 53, pp. 229–251. Springer, Heidelberg (2013)Google Scholar
  4. 4.
    Alsmeyer, G., Meiners, M.: Fixed points of inhomogeneous smoothing transforms. J. Differ. Equ. Appl. 18(8), 1287–1304 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Alsmeyer, G., Meiners, M.: Fixed points of the smoothing transform: two-sided solutions. Probab. Theory Relat. Fields 155(1–2), 165–199 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Athreya, K.B.: Change of measures for Markov chains and the \(L \log L\) theorem for branching processes. Bernoulli 6(2), 323–338 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Basrak, B., Davis, R.A., Mikosch, T.: A characterization of multivariate regular variation. Ann. Appl. Probab. 12(3), 908–920 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Bassetti, F., Matthes, D.: Multi-dimensional smoothing transformations: existence, regularity and stability of fixed points. Stoch. Process. Appl. 124(1), 154–198 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Biggins, J.: Martingale convergence in the branching random walk. J. Appl. Probab. 14(1), 25–37 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Biggins, J., Kyprianou, A.: Measure change in multitype branching. Adv. Appl. Probab. 36(2), 544–581 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Biggins, J.D., Kyprianou, A.E.: Seneta-Heyde norming in the branching random walk. Ann. Probab. 25(1), 337–360 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Biggins, J.D., Kyprianou, A.E.: Fixed points of the smoothing transform: the boundary case. Electron. J. Probab. 10(17), 609–631 (2005)MathSciNetGoogle Scholar
  13. 13.
    Blum, M.G.B., François, O., Janson, S.: The mean, variance and limiting distribution of two statistics sensitive to phylogenetic tree balance. Ann. Appl. Probab. 16(4), 2195–2214 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Boman, J., Lindskog, F.: Support theorems for the Radon transform and Cramér–Wold theorems. J. Theor. Probab. 22(3), 683–710 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Breiman, L.: Probability. Addison-Wesley, Reading (1968)zbMATHGoogle Scholar
  16. 16.
    Buraczewski, D.: On tails of fixed points of the smoothing transform in the boundary case. Stoch. Process. Appl. 119(11), 3955–3961 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Buraczewski, D., Damek, E., Guivarc’h, Y., Mentemeier, S.: On multidimensional Mandelbrot’s cascades. J. Differ. Equ. Appl. 20(11), 1523–1567 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Buraczewski, D., Damek, E., Mentemeier, S., Mirek, M.: Heavy tailed solutions of multivariate smoothing transforms. Stoch. Process. Appl. 123(6), 1947–1986 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Buraczewski, D., Damek, E., Zienkiewicz, J.: Precise tail asymptotics of fixed points of the smoothing transform with general weights. Bernoulli (2014) (to appear)Google Scholar
  20. 20.
    Buraczewski, D., Kolesko, K.: Linear stochastic equations in the critical case. J. Differ. Equ. Appl. 20(2), 188–209 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Caliebe, A.: Symmetric fixed points of a smoothing transformation. Adv. Appl. Probab. 35(2), 377–394 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Caliebe, A., Rösler, U.: Fixed points with finite variance of a smoothing transformation. Stoch. Process. Appl. 107(1), 105–129 (2003)zbMATHCrossRefGoogle Scholar
  23. 23.
    Chevillard, L., Rhodes, R., Vargas, V.: Gaussian multiplicative chaos for symmetric isotropic matrices. J. Stat. Phys. 150(4), 678–703 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Cohn, H., Jagers, P.: General branching processes in varying environment. Ann. Appl. Probab. 4(1), 184–193 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Doney, R.A.: A limit theorem for a class of supercritical branching processes. J. Appl. Probab. 9, 707–724 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Dunford, N., Schwartz, J.T.: Linear Operators, Part I, General Theory. Wiley, New York (1958)Google Scholar
  27. 27.
    Durrett, R., Liggett, T.M.: Fixed points of the smoothing transformation. Z. Wahrsch. Verw. Gebiete 64(3), 275–301 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Feller, W.: An Introduction to Probability Theory and its Applications, vol. II, 2nd edn. Wiley, New York (1971)zbMATHGoogle Scholar
  29. 29.
    Goldie, C.M.: Implicit renewal theory and tails of solutions of random equations. Ann. Appl. Probab. 1(1), 126–166 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Guivarc’h, Y.: Sur une extension de la notion de loi semi-stable. Ann. Inst. H. Poincaré Probab. Statist. 26(2), 261–285 (1990)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Guivarc’h, Y., Le Page, É.: Simplicité de spectres de Lyapounov et propriété d’isolation spectrale pour une famille d’opérateurs de transfert sur l’espace projectif. In: Random walks and geometry, pp. 181–259. Walter de Gruyter GmbH & Co. KG, Berlin (2004)Google Scholar
  32. 32.
    Guivarc’h, Y., Le Page, É.: Spectral gap properties and asymptotics of stationary measures for affine random walks. ArXiv e-prints. arXiv:1204.6004, April (2012)
  33. 33.
    Iksanov, A., Meiners, M.: Fixed points of multivariate smoothing transforms with scalar weights. ArXiv e-prints. arXiv:1402.4147, February (2014)
  34. 34.
    Iksanov, A.M.: Elementary fixed points of the BRW smoothing transforms with infinite number of summands. Stoch. Process. Appl. 114(1), 27–50 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Iksanov, O., Negadaĭlov, P.: On the supremum of a martingale associated with a branching random walk. Teor. ĭmovīr. Mat. Stat. 74, 44–51 (2006)Google Scholar
  36. 36.
    Jagers, P.: Branching Processes with Biological Applications. Wiley Series in Probability and Mathematical Statistics-Applied Probability and Statistics, vol. II. Wiley-Interscience, Wiley, London, New York, Sydney (1975)Google Scholar
  37. 37.
    Jagers, P.: General branching processes as Markov fields. Stoch. Process. Appl. 32(2), 183–212 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Janson, S.: Functional limit theorems for multitype branching processes and generalized Pólya urns. Stoch. Process. Appl. 110(2), 177–245 (2004)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Jelenković, P., Olvera-Cravioto, M.: Implicit renewal theorem for trees with general weights. Stoch. Process. Appl. 122(9), 3209–3238 (2012)Google Scholar
  40. 40.
    Jelenković, P., Olvera-Cravioto, M.: Implicit renewal theory and power tails on trees. Adv. Appl. Probab. 44(2), 528–561 (2012)Google Scholar
  41. 41.
    Kahane, J.-P., Peyrière, J.: Sur certaines martingales de Benoit Mandelbrot. Adv. Math. 22(2), 131–145 (1976)zbMATHCrossRefGoogle Scholar
  42. 42.
    Kelley, J.L.: General Topology. D. Van Nostrand Company Inc., Toronto, New York, London (1955)zbMATHGoogle Scholar
  43. 43.
    Kesten, H.: Random difference equations and renewal theory for products of random matrices. Acta Math. 131, 207–248 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Kesten, H.: Renewal theory for functionals of a Markov chain with general state space. Ann. Probab. 2(3), 355–386 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Knape, M., Neininger, R.: Polya urns via the contraction method. Comb. Probab. Comput. 23, 1148–1186 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Kolesko, K., Mentemeier, S.: Fixed points of the multivariate smoothing transform: the critical case. ArXiv e-prints. arXiv:1409.7220, September (2014)
  47. 47.
    Kyprianou, A.E.: Slow variation and uniqueness of solutions to the functional equation in the branching random walk. J. Appl. Probab. 35(4), 795–801 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Kyprianou, A.E., Rahimzadeh Sani, A.: Martingale convergence and the functional equation in the multi-type branching random walk. Bernoulli 7(4), 593–604 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Leckey, K., Neininger, R., Szpankowski, W.: Towards more realistic probabilistic models for data structures: the external path length in tries under the Markov model. In: Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 877–886. SIAM, Philadelphia (2012)Google Scholar
  50. 50.
    Liu, Q.: Fixed points of a generalized smoothing transformation and applications to the branching random walk. Adv. Appl. Probab. 30(1), 85–112 (1998)zbMATHCrossRefGoogle Scholar
  51. 51.
    Liu, Q.: On generalized multiplicative cascades. Stoch. Process. Appl. 86(2), 263–286 (2000)zbMATHCrossRefGoogle Scholar
  52. 52.
    Liu, Q.: Asymptotic properties and absolute continuity of laws stable by random weighted mean. Stoch. Process. Appl. 95(1), 83–107 (2001)zbMATHCrossRefGoogle Scholar
  53. 53.
    Lyons, R., Pemantle, R.: Random walk in a random environment and first-passage percolation on trees. Ann. Probab. 20(1), 125–136 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Mandelbrot, B.: Multiplications aléatoires itérées et distributions invariantes par moyenne pondérée aléatoire. C. R. Acad. Sci. Paris Sér. A 278, 289–292 (1974)MathSciNetzbMATHGoogle Scholar
  55. 55.
    Melfi, V.F.: Nonlinear Markov renewal theory with statistical applications. Ann. Probab. 20(2), 753–771 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Menshikov, M., Petritis, D.: On random walks in random environment on trees and their relationship with multiplicative chaos. In: Mathematics and Computer Science, II (Versailles, 2002), Trends in Mathematics pp. 415–422. Birkhäuser, Basel (2002)Google Scholar
  57. 57.
    Menshikov, M., Petritis, D., Popov, S.: Bindweeds or random walks in random environments on multiplexed trees and their asymptotics. In: Discrete Random Walks (Paris, 2003), Discrete Mathematics and Theoretical Computer Science Proceedings, AC, pp. 205–216 (electronic). Association of Discrete Mathematics and Theoretical Computer Science, Nancy (2003)Google Scholar
  58. 58.
    Menshikov, M., Petritis, D., Popov, S.: A note on matrix multiplicative cascades and bindweeds. Markov Process. Relat. Fields 11(1), 37–54 (2005)MathSciNetzbMATHGoogle Scholar
  59. 59.
    Mentemeier, S.: On Multivariate stochastic fixed point equations: the smoothing transform and random difference equations. Ph.D. thesis, Westfälische Wilhelms-Universität Münster (2013)Google Scholar
  60. 60.
    Mentemeier, S.: The fixed points of the multivariate smoothing transform. ArXiv e-prints. arXiv:1309.0733v2, September (2013)
  61. 61.
    Mirek, M.: On fixed points of a generalized multidimensional affine recursion. Probab. Theory Relat. Fields 156(3–4), 665–705 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    Neininger, R., Rüschendorf, L.: A general limit theorem for recursive algorithms and combinatorial structures. Ann. Appl. Probab. 14(1), 378–418 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  63. 63.
    Neininger, R., Rüschendorf, L.: A survey of multivariate aspects of the contraction method. Discrete Math. Theor. Comput. Sci. 8(1), 31–56 (2006). (electronic)MathSciNetzbMATHGoogle Scholar
  64. 64.
    Nerman, O.: On the convergence of supercritical general (C-M-J) branching processes. Z. Wahrsch. Verw. Gebiete 57(3), 365–395 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  65. 65.
    Nolan, J.P.: Stable distributions—models for heavy tailed data. In Progress, Chapter 1 Birkhauser, Boston. (2012)
  66. 66.
    Olofsson, P.: Size-biased branching population measures and the multi-type \(x\log x\) condition. Bernoulli 15(4), 1287–1304 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    Rhodes, R., Vargas, V.: Gaussian multiplicative chaos and applications: a review. Probab. Surv. 11, 315–392 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  68. 68.
    Rüschendorf, L.: On stochastic recursive equations of sum and max type. J. Appl. Probab. 43(3), 687–703 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  69. 69.
    Stadtmüller, U., Trautner, R.: Tauberian theorems for Laplace transforms in dimension \(D>1\). J. Reine Angew. Math. 323, 127–138 (1981)MathSciNetzbMATHGoogle Scholar
  70. 70.
    Zolotarev, V.: One-Dimensional Stable Distributions, Translations of Mathematical Monographs, vol. 65. American Mathematical Society, Providence (1986) (Translated from the Russian by H. H. McFaden, Translation edited by Ben Silver)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Instytut MatematycznyUniwersytet WrocławskiWrocławPoland

Personalised recommendations