Probability Theory and Related Fields

, Volume 163, Issue 3–4, pp 769–801 | Cite as

The conformal loop ensemble nesting field

  • Jason Miller
  • Samuel S. Watson
  • David B. Wilson


The conformal loop ensemble \({{\mathrm{CLE}}}_\kappa \) with parameter \(8/3 < \kappa < 8\) is the canonical conformally invariant measure on countably infinite collections of non-crossing loops in a simply connected domain. We show that the number of loops surrounding an \(\varepsilon \)-ball (a random function of \(z\) and \(\varepsilon \)) minus its expectation converges almost surely as \(\varepsilon \rightarrow 0\) to a random conformally invariant limit in the space of distributions, which we call the nesting field. We generalize this result by assigning i.i.d. weights to the loops, and we treat an alternate notion of convergence to the nesting field in the case where the weight distribution has mean zero. We also establish estimates for moments of the number of CLE loops surrounding two given points.


SLE CLE Conformal loop ensemble Gaussian free field 

Mathmatics Subject Classifications

Primary 60J67 60F10 Secondary 60D05 37A25 



Both JM and SSW thank the hospitality of the Theory Group at Microsoft Research, where part of the research for this work was completed. JM’s work was partially supported by DMS1204894 and SSW’s work was partially supported by an NSF Graduate Research Fellowship, award No. 1122374.


  1. 1.
    Ban, E.v.d., Crainic, M.: Analysis on Manifolds: lecture notes for the 2009/2010 Master Class (2012).
  2. 2.
    Beffara, V., Duminil-Copin, H.: The self-dual point of the two-dimensional random-cluster model is critical for \(q\ge 1\). Probab. Theory Relat. Fields 153(3–4), 511–542 (2012). arXiv:1006.5073 zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Dembo, A., Peres, Y., Rosen, J., Zeitouni, O.: Thick points for planar Brownian motion and the Erdős-Taylor conjecture on random walk. Acta Math. 186(2), 239–270 (2001). math/0107191 zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Fortuin, C.M., Kasteleyn, P.W.: On the random-cluster model. I. Introduction and relation to other models. Physica 57, 536–564 (1972)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Gut, A.: Stopped Random Walks. Springer Series in Operations Research and Financial Engineering, second edition. Springer, Berlin (2009)Google Scholar
  6. 6.
    Kager, W., Nienhuis, B.: J. Statist. Phys. 115(5–6), 1149–1229 (2004). math-ph/0312056 zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Kemppainen, A., Werner, W.: The nested simple conformal loop ensembles in the Riemann sphere (2014). arXiv:1402.2433
  8. 8.
    Lawler, G.F.: Conformally Invariant Processes in the Plane. Mathematical Surveys and Monographs #114. American Mathematical Society, Providence (2005)Google Scholar
  9. 9.
    Miller, J., Sheffield, S.: CLE(4) and the Gaussian free field (2014)Google Scholar
  10. 10.
    Miller, J., Watson, S.S., Wilson, D.: Extreme nesting in the conformal loop ensemble. Ann. Probab. (2014, to appear). arXiv:1401.0217
  11. 11.
    Rohde, S., Schramm, O.: Basic properties of SLE. Ann. Math. (2) 161(2), 883–924 (2005). math/0106036 zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Sheffield, S.: Exploration trees and conformal loop ensembles. Duke Math. J. 147(1), 79–129 (2009). math/0609167 zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Schramm, O., Sheffield, S., Wilson, D.B.: Conformal radii for conformal loop ensembles. Commun. Math. Phys. 288(1), 43–53 (2009). math/0611687 zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Sheffield, S., Werner, W.: Conformal loop ensembles: the Markovian characterization and the loop-soup construction. Ann. Math. (2) 176(3), 1827–1917 (2012). arXiv:1006.2374 zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Tao, T.: An epsilon of room, I: real analysis. Graduate Studies in Mathematics #117. American Mathematical Society, Pages from year three of a mathematical blog (2010)Google Scholar
  16. 16.
    Taylor, M.E.: Partial Differential Equations I. Basic Theory. Applied Mathematical Sciences #115, second edition. Springer, Berlin (2011)Google Scholar
  17. 17.
    Williams, D.: Probability with Martingales. Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jason Miller
    • 1
  • Samuel S. Watson
    • 2
  • David B. Wilson
    • 3
  1. 1.Massachusetts Institute of Technology and Microsoft ResearchCambridgeUSA
  2. 2.Massachusetts Institute of TechnologyCambridgeUSA
  3. 3.Microsoft ResearchRedmondUSA

Personalised recommendations