Probability Theory and Related Fields

, Volume 159, Issue 1–2, pp 357–403 | Cite as

Exit times for an increasing Lévy tree-valued process

  • Romain Abraham
  • Jean-François Delmas
  • Patrick HoscheitEmail author


We give an explicit construction of the increasing tree-valued process introduced by Abraham and Delmas using a random point process of trees and a grafting procedure. This random point process will be used in companion papers to study record processes on Lévy trees. We use the Poissonian structure of the jumps of the increasing tree-valued process to describe its behavior at the first time the tree grows higher than a given height, using a spinal decomposition of the tree, similar to the classical Bismut and Williams decompositions. We also give the joint distribution of this exit time and the ascension time which corresponds to the first infinite jump of the tree-valued process.


Lévy tree Exit time Tree-valued Markov process  Ascension time Random point measure Spine decomposition 

Mathematics Subject Classification (1991)

60G55 60J25 60J75 60J80 


  1. 1.
    Abraham, R., Delmas, J.-F.: Fragmentation associated with Lévy processes using snake. Probab. Theory Related Fields 141, 113–154 (2007)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Abraham, R., Delmas, J.-F.: A continuum-tree-valued Markov process. Ann. Probab. 40(3), 1167–1211 (2012)Google Scholar
  3. 3.
    Abraham, R., Delmas, J.-F.: Record process on the Continuum Random Tree. ALEA Latin Am. J. Probab. Math. Stat. 10, 225–251 (2013)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Abraham, R., Delmas, J.-F.: The forest associated with the record process on a Lévy tree. Stoch. Proc. Appl. (2013, to appear)Google Scholar
  5. 5.
    Abraham, R., Delmas, J.-F., He, H.: Pruning Galton-Watson trees and tree-valued Markov processes. Annales de l’Institut Henri Poincaré (B) Probability and Statistics 48(3), 688–705 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Abraham, R., Delmas, J.-F., Hoscheit, P.: A note on the Gromov-Hausdorff-Prokhorov distance between (locally) compact metric measure spaces. Electron. J. Probab. 18, 1–21 (2013)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Abraham, R., Delmas, J.-F., Voisin, G.: Pruning a Lévy continuum random tree. Electron. J. Probab. 15, 1429–1473 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Aldous, D.: The Continuum Random Tree I. Ann. Probab. 19(1), 1–28 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Aldous, D., Pitman, J.: The standard additive coalescent. Ann. Probab. 26(4), 1703–1726 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Aldous, D., Pitman, J.: Tree-valued Markov chains derived from Galton–Watson processes. Annales de l’Institut Henri Poincaré (B) Probability and Statistics 34(5), 637–686 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Berestycki, J., Kyprianou, A., Murillo-Salas, A.: The prolific backbone for supercritical superdiffusions. Stochast. Process. Appl. 121(6), 1315–1331 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Burago, D., Youri, B.D., Ivanov, S.: A course in metric geometry. AMS, Providence (2001)zbMATHGoogle Scholar
  13. 13.
    Duquesne, T., Le Gall, J.-F.: Random trees, Lévy processes and spatial branching processes. Astérisque, vol. 281, SMF (2002)Google Scholar
  14. 14.
    Duquesne, T., Le Gall, J.-F.: Probabilistic and fractal aspects of Lévy trees. Probab. Theory Relat. Fields 131(4), 553–603 (2005)CrossRefzbMATHGoogle Scholar
  15. 15.
    Duquesne, T., Winkel, M.: Growth of Lévy trees. Probab. Theory Relat. Fields 139(3–4), 313–371 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Duquesne, T., Winkel, M.: Hereditary tree growth and Levy forests, vol. 44. (2012). Arxiv. preprint arXiv:1211.2179Google Scholar
  17. 17.
    Evans, S.N.: Probability and real trees. In: Lecture Notes in Mathematics, vol. 1920. Springer, Berlin (2008)Google Scholar
  18. 18.
    Evans, S.N., Pitman, J., Winter, A.: Rayleigh processes, real trees, and root growth with re-grafting. Probab. Theory Relat. Fields 134(1), 81–126 (2005)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Evans, S.N., Winter, A.: Subtree prune and regraft: a reversible real tree-valued Markov process. Ann. Probab. 34(3), 918–961 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Greven, A., Pfaffelhuber, P., Winter, A.: Convergence in distribution of random metric measure spaces (\(\Lambda \)-coalescent measure trees). Probab. Theory Relat. Fields 145(1–2), 285–322 (2008)MathSciNetGoogle Scholar
  21. 21.
    Gromov, M.: Metric Structures for Riemannian and Non-Riemannian Spaces. Modern Birkhäuser Classics, Birkhäuser (2007)zbMATHGoogle Scholar
  22. 22.
    Kyprianou, A.: Introductory Lectures on Fluctuations of Lévy Processes with Applications. Universitext. Springer, Berlin (2006)zbMATHGoogle Scholar
  23. 23.
    Lambert, A.: Population dynamics and random genealogies. Stochast. Models 24, 45–163 (2008)CrossRefzbMATHGoogle Scholar
  24. 24.
    Le Gall, J.-F.: Random real trees. Annales de la faculté des Sciences de Toulouse-Mathématiques 15(1), 35 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Le Gall, J.-F., Le Jan, Y.: Branching processes in Lévy processes: the exploration process. Ann. Probab. 26(1), 213–252 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Li, Z.: Measure-valued branching Markov processes. In: Probability and Its Applications. Springer, Berlin (2011)Google Scholar
  27. 27.
    Miermont, G.: Tessellations of random maps of arbitrary genus. Annales scientifiques de l’École Normale supérieure 42, 725–781 (2009)zbMATHMathSciNetGoogle Scholar
  28. 28.
    Villani, C.: Optimal Transport: Grundlehren der mathematischen Wissenschaften, vol. 338. Springer, Berlin (2009)Google Scholar
  29. 29.
    Voisin, G.: Dislocation measure of the fragmentation of a general Lévy tree. Probab. Stat, ESAIM (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Romain Abraham
    • 1
  • Jean-François Delmas
    • 2
  • Patrick Hoscheit
    • 2
    Email author
  1. 1.MAPMO, CNRS UMR 7349, Fédération Denis Poisson FR 2964Université d’OrléansOrléans Cedex 2France
  2. 2.Université Paris-Est, CERMICSMarne La ValléeFrance

Personalised recommendations