Probability Theory and Related Fields

, Volume 157, Issue 3–4, pp 817–845 | Cite as

A simple method for finite range decomposition of quadratic forms and Gaussian fields

Article

Abstract

We present a simple method to decompose the Green forms corresponding to a large class of interesting symmetric Dirichlet forms into integrals over symmetric positive semi-definite and finite range (properly supported) forms that are smoother than the original Green form. This result gives rise to multiscale decompositions of the associated Gaussian free fields into sums of independent smoother Gaussian fields with spatially localized correlations. Our method makes use of the finite propagation speed of the wave equation and Chebyshev polynomials. It improves several existing results and also gives simpler proofs.

Keywords

Green’s function Positive definite Gaussian free field  Dirichlet form Elliptic operator Renormalization group 

Mathematics Subject Classification (2000)

60G15 35J08 

References

  1. 1.
    Adams, S., Kotecký, R., Müller, S.: Finite range decomposition for families of gradient Gaussian measures. App. J. Funct. Anal (2012)Google Scholar
  2. 2.
    Ahlfors, L.: Complex analysis, 3rd edn. McGraw-Hill Book Co., New York (1978). An introduction to the theory of analytic functions of one complex variable, International Series in Pure and Applied MathematicsGoogle Scholar
  3. 3.
    Alinhac, S.: Hyperbolic partial differential equations. Universitext. Springer, Dordrecht (2009)CrossRefGoogle Scholar
  4. 4.
    Brydges, D.: Lectures on the renormalisation group. In: Statistical mechanics, IAS/Park City Math. Ser., vol. 16, pp. 7–93. American Mathematical Society, Providence (2009)Google Scholar
  5. 5.
    Brydges, D., Fröhlich, J., Spencer, T.: The random walk representation of classical spin systems and correlation inequalities. Comm. Math. Phys. 83(1), 123–150 (1982)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Brydges, D., Guadagni, G., Mitter, P.: Finite range decomposition of Gaussian processes. J. Statist. Phys. 115(1–2), 415–449 (2004)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Brydges, D., Imbrie, J., Slade, G.: Functional integral representations for self-avoiding walk. Probab. Surv. 6, 34–61 (2009)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Brydges, D., Mitter, P.: On the convergence to the continuum of finite range lattice covariances. J. Statist. Phys. 147(4), 716–727 (2012)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Brydges, D., Slade, G.: Weakly self-avoiding walk in dimensions four and higher: a renormalisation group analysis. In preparation (2012)Google Scholar
  10. 10.
    Brydges, D., Talarczyk, A.: Finite range decompositions of positive-definite functions. J. Funct. Anal. 236(2), 682–711 (2006)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Carne, T.: A transmutation formula for Markov chains. Bull. Sci. Math. (2) 109(4), 399–405 (1985).Google Scholar
  12. 12.
    Cheeger, J., Yau, S.: A lower bound for the heat kernel. Comm. Pure Appl. Math. 34(4), 465–480 (1981)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Chen, Z.Q., Fukushima, M.: Symmetric Markov processes, time change, and boundary theory, London Mathematical Society Monographs Series, vol. 35. Princeton University Press, Princeton (2012)Google Scholar
  14. 14.
    Dynkin, E.: Markov processes as a tool in field theory. J. Funct. Anal. 50(2), 167–187 (1983)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Dynkin, E.: Gaussian and non-Gaussian random fields associated with Markov processes. J. Funct. Anal. 55(3), 344–376 (1984)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Dynkin, E.: Polynomials of the occupation field and related random fields. J. Funct. Anal. 58(1), 20–52 (1984)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Fefferman, C.: Pointwise convergence of Fourier series. Ann. of Math. 98(2),551–571 (1973)Google Scholar
  18. 18.
    Fefferman, C., de la Llave, R.: Relativistic stability of matter. I. Rev. Mat. Iberoamericana 2(1–2), 119–213 (1986)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet forms and symmetric Markov processes, de Gruyter Studies in Mathematics, vol. 19, extended edn. Walter de Gruyter & Co., Berlin (2011)Google Scholar
  20. 20.
    Gneiting, T.: Radial positive definite functions generated by Euclid’s hat. J. Multivariate Anal. 69(1), 88–119 (1999)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Gneiting, T.: Criteria of Pólya type for radial positive definite functions. Proc. Amer. Math. Soc. 129(8), 2309–2318 (2001) (electronic)Google Scholar
  22. 22.
    Hainzl, C., Seiringer, R.: General decomposition of radial functions on \({\mathbb{R}}^{n}\) and applications to \(N\)-body quantum systems. Lett. Math. Phys. 61(1), 75–84 (2002)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Hofmann, S., Kim, S.: Gaussian estimates for fundamental solutions to certain parabolic systems. Publ. Mat. 48(2), 481–496 (2004)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Kim, S.: Gaussian estimates for fundamental solutions of second order parabolic systems with time-independent coefficients. Trans. Am. Math. Soc. 360(11), 6031–6043 (2008)CrossRefMATHGoogle Scholar
  25. 25.
    Lax, P.: Hyperbolic partial differential equations, Courant Lecture Notes in Mathematics, vol. 14. New York University Courant Institute of Mathematical Sciences, New York (2006). With an appendix by Cathleen S. MorawetzGoogle Scholar
  26. 26.
    Nash, J.: Continuity of solutions of parabolic and elliptic equations. Am. J. Math. 80, 931–954 (1958)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Pólya, G.: Remarks on characteristic functions. In: Proceedings of the Berkeley Symposium on Mathematical Statistics and Probability, 1945, 1946, pp. 115–123. University of California Press, Berkeley and Los Angeles (1949)Google Scholar
  28. 28.
    Reed, M., Simon, B.: Methods of modern mathematical physics. II. Fourier analysis, self-adjointness. Academic Press [Harcourt Brace Jovanovich Publishers], New York (1975)Google Scholar
  29. 29.
    Reed, M., Simon, B.: Methods of modern mathematical physics. I, second edn. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York (1980). Functional analysisGoogle Scholar
  30. 30.
    Sheffield, S.: Gaussian free fields for mathematicians. Probab. Theory Relat Field 139(3–4), 521–541 (2007)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Sikora, A.: Riesz transform, Gaussian bounds and the method of wave equation. Math. Z. 247(3), 643–662 (2004)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Simon, B.: Functional integration and quantum physics, Pure and Applied Mathematics, vol. 86. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York (1979)Google Scholar
  33. 33.
    Symanzik, K.: Euclidean quantum field theory. In: Jost, R. (ed.) Local Quantum Field Theory. Academic Press, New York (1969)Google Scholar
  34. 34.
    Varopoulos, N.: Long range estimates for Markov chains. Bull. Sci. Math. (2) 109(3), 225–252 (1985)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of British ColumbiaVancouverCanada

Personalised recommendations