Probability Theory and Related Fields

, Volume 155, Issue 3–4, pp 665–701 | Cite as

Quantitative approximations of evolving probability measures and sequential Markov chain Monte Carlo methods

  • Andreas Eberle
  • Carlo Marinelli


We study approximations of evolving probability measures by an interacting particle system. The particle system dynamics is a combination of independent Markov chain moves and importance sampling/resampling steps. Under global regularity conditions, we derive non-asymptotic error bounds for the particle system approximation. In a few simple examples, including high dimensional product measures, bounds with explicit constants of feasible size are obtained. Our main motivation are applications to sequential MCMC methods for Monte Carlo integral estimation.


Markov chain Monte Carlo Sequential Monte Carlo Importance sampling Spectral gap Dirichlet forms Functional inequalities Feynman–Kac formula 

Mathematics Subject Classification (2000)

65C05 60J25 60B10 47H20 47D08 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bengtsson, Th., Bickel, P., Li, B.: Curse-of-dimensionality revisited: collapse of the particle filter in very large scale systems. In: Probability and statistics: essays in honor of David A. Freedman, Inst. Math. Stat. Collect., vol. 2, pp. 316–334. Inst. Math. Statist., Beachwood, OH (2008)Google Scholar
  2. 2.
    Beskos A., Crisan D., Jasra A.: On the stability of a class of sequential Monte Carlo methods in high dimensions. Technical report, Imperial College, London (2011)Google Scholar
  3. 3.
    Bickel, P., Li, Bo., Bengtsson, Th.: Sharp failure rates for the bootstrap particle filter in high dimensions. In: Pushing the limits of contemporary statistics: contributions in honor of Jayanta K. Ghosh, Inst. Math. Stat. Collect., vol. 3, pp. 318–329. Inst. Math. Statist., Beachwood, OH (2008)Google Scholar
  4. 4.
    Cappé O., Guillin A., Marin J.M., Robert C.P.: Population Monte Carlo. J. Comput. Graph. Stat. 13(4), 907–929 (2004)CrossRefGoogle Scholar
  5. 5.
    Cappé O., Moulines E., Rydén T.: Inference in hidden Markov models. Springer Series in Statistics, Springer, New York (2005)MATHGoogle Scholar
  6. 6.
    Cérou F., Del Moral P., Guyader A.: A nonasymptotic theorem for unnormalized Feynman–Kac particle models. Ann. Inst. H. Poincaré Probab. Stat. 47(3), 629–649 (2011)MATHCrossRefGoogle Scholar
  7. 7.
    Chopin N.: A sequential particle filter method for static models. Biometrika 89(3), 539–551 (2002)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Chopin N.: Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference. Ann. Stat. 32(6), 2385–2411 (2004)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Del Moral P.: Feynman–Kac formulae. Springer-Verlag, New York (2004)MATHCrossRefGoogle Scholar
  10. 10.
    Del Moral P., Doucet A., Jasra A.: Sequential Monte Carlo samplers. J. R. Stat. Soc. B 68(3), 411–436 (2006)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Del Moral, P., Doucet, A., Jasra, A.: On adaptive resampling procedures for sequential Monte Carlo methods. Bernoulli (in press)Google Scholar
  12. 12.
    Del Moral P., Guionnet A.: On the stability of interacting processes with applications to filtering and genetic algorithms. Ann. Inst. H. Poincaré Probab. Stat. 37(2), 155–194 (2001)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Del Moral P., Miclo L.: On the convergence and applications of generalized simulated annealing. SIAM J. Control Optim. 37(4), 1222–1250 (1999) (electronic)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Del Moral, P., Miclo, L.: Branching and interacting particle systems approximations of Feynman–Kac formulae with applications to non-linear filtering. In: Séminaire de Probabilités, XXXIV, Lecture Notes in Math., vol. 1729, pp. 1–145. Springer, Berlin (2000)Google Scholar
  15. 15.
    Diaconis P.: The cutoff phenomenon in finite Markov chains. Proc. Nat. Acad. Sci. USA 93(4), 1659–1664 (1996)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Ding J., Lubetzky E., Peres Y.: Total variation cutoff in birth-and-death chains. Probab. Theory Relat. Fields 146(1–2), 61–85 (2010)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Douc R., Guillin R., Marin J.-M., Robert C.P.: Minimum variance importance sampling via population Monte Carlo. ESAIM Probab. Stat. 11, 427–447 (2007) (electronic)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Douc R., Moulines E.: Limit theorems for weighted samples with applications to sequential Monte Carlo methods. Ann. Stat. 36(5), 2344–2376 (2008)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Doucet, A., Freitas, N., Gordon, N. (eds): Sequential Monte Carlo methods in practice. Springer-Verlag, New York (2001)MATHGoogle Scholar
  20. 20.
    Eberle, A., Marinelli, C.: Stability of sequential Markov chain Monte Carlo methods. In: Conference Oxford sur les méthodes de Monte Carlo séquentielles, ESAIM Proc., vol. 19, pp. 22–31. EDP Sci., Les Ulis (2007)Google Scholar
  21. 21.
    Eberle A., Marinelli C.: L p estimates for Feynman–Kac propagators with time-dependent reference measures. J. Math. Anal. Appl. 365(1), 120–134 (2010)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Geyer, C.J.: Markov chain Monte Carlo maximum likelihood. In: Computing Science and Statistics: Proceedings of the 23rd Symposium on the Interface, pp. 156–163 (1991)Google Scholar
  23. 23.
    Gīhman Ĭ.Ī., Skorohod A.V.: The theory of stochastic processes. II. Springer-Verlag, New York (1975)MATHGoogle Scholar
  24. 24.
    Gulisashvili A., van Casteren J.A.: Non-autonomous Kato classes and Feynman–Kac propagators. World Scientific Publishing, Hackensack NJ (2006)MATHCrossRefGoogle Scholar
  25. 25.
    Hukushima K., Nemoto K.: Exchange Monte Carlo method and application to spin glass simulations. J. Phys. Soc. Jpn. 65(6), 1604–1608 (1996)CrossRefGoogle Scholar
  26. 26.
    Jarzynski C.: Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78(14), 2690–2693 (1997)CrossRefGoogle Scholar
  27. 27.
    Jasra A., Doucet A.: Stability of sequential Monte Carlo samplers via the Foster–Lyapunov condition. Statist. Probab. Lett. 78(17), 3062–3069 (2008)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Kipnis C., Landim C.: Scaling limits of interacting particle systems. Springer-Verlag, Berlin (1999)MATHCrossRefGoogle Scholar
  29. 29.
    Kou S.C., Zhou Q., Wong W.H.: Equi-energy sampler with applications in statistical inference and statistical mechanics. Ann. Stat. 34(4), 1581–1652 (2006)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Liu J.S.: Monte Carlo strategies in scientific computing. Springer-Verlag, New York (2001)MATHGoogle Scholar
  31. 31.
    Madras N., Zheng Z.: On the swapping algorithm. Random Struct. Algorithms 22(1), 66–97 (2003)MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Miclo L.: An example of application of discrete Hardy’s inequalities. Markov Process. Relat. Fields 5(3), 319–330 (1999)MathSciNetMATHGoogle Scholar
  33. 33.
    Neal R.M.: Annealed importance sampling. Stat. Comput. 11(2), 125–139 (2001)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Robert C.P., Casella G.: Monte Carlo statistical methods, 2nd edn. Springer-Verlag, New York (2004)MATHCrossRefGoogle Scholar
  35. 35.
    Rousset, M.: Continuous time population Monte Carlo and computational physics, Ph.D. thesis, Université Paul Sabatier, Toulouse (2006)Google Scholar
  36. 36.
    Rousset M.: On the control of an interacting particle estimation of Schrödinger ground states. SIAM J. Math. Anal. 38(3), 824–844 (2006) (electronic)MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Saloff-Coste, L.: Lectures on finite Markov chains, Lectures on probability theory and statistics (Saint-Flour, 1996). In: Lecture Notes in Math., vol. 1665, pp. 301–413. Springer, Berlin (1997)Google Scholar
  38. 38.
    Schweizer, N.: Non-asymptotic error bounds for Sequential MCMC methods. Ph.D. thesis, Universität Bonn (2011)Google Scholar
  39. 39.
    Stannat W.: On the convergence of genetic algorithms—a variational approach. Probab. Theory Relat. Fields 129(1), 113–132 (2004)MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Whiteley, N.: Sequential Monte Carlo samplers: error bounds and insensitivity to initial conditions. arXiv:1103.3970v1Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Institut für Angewandte MathematikUniversität BonnBonnGermany
  2. 2.Facoltà di EconomiaUniversità di BolzanoBolzanoItaly

Personalised recommendations