Advertisement

Probability Theory and Related Fields

, Volume 155, Issue 3–4, pp 583–619 | Cite as

“Trees under attack”: a Ray–Knight representation of Feller’s branching diffusion with logistic growth

  • V. Le
  • E. PardouxEmail author
  • A. Wakolbinger
Article

Abstract

We obtain a representation of Feller’s branching diffusion with logistic growth in terms of the local times of a reflected Brownian motion H with a drift that is affine linear in the local time accumulated by H at its current level. As in the classical Ray–Knight representation, the excursions of H are the exploration paths of the trees of descendants of the ancestors at time t = 0, and the local time of H at height t measures the population size at time t. We cope with the dependence in the reproduction by introducing a pecking order of individuals: an individual explored at time s and living at time tH s is prone to be killed by any of its contemporaneans that have been explored so far. The proof of our main result relies on approximating H with a sequence of Harris paths H N which figure in a Ray–Knight representation of the total mass of a branching particle system. We obtain a suitable joint convergence of H N together with its local times and with the Girsanov densities that introduce the dependence in the reproduction.

Keywords

Ray–Knight representation Feller branching with logistic growth Exploration process Local time Girsanov transform 

Mathematics Subject Classification (2000)

Primary 60J70 Secondary 60J80 60J55 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ba, M., Pardoux, E., Sow, A.B.: Binary trees, exploration processes, and an extended Ray–Knight Theorem. J. Appl. Probab. 49 (2012)Google Scholar
  2. 2.
    Billingsley P.: Probability and measure, 3rd edn. Wiley, New York (1995)zbMATHGoogle Scholar
  3. 3.
    Billingsley P.: Convergence of Probability Measures, 2nd edn. Wiley, New York (1999)zbMATHCrossRefGoogle Scholar
  4. 4.
    Brémaud P.: Point processes and queues: martingale dynamics. Springer-Verlag, New York (1981)zbMATHCrossRefGoogle Scholar
  5. 5.
    Ethier S., Kurtz Th.: Markov processes: characterization and convergence. Wiley, New York (1986)zbMATHCrossRefGoogle Scholar
  6. 6.
    Friedman A.: Stochastic differential equations and applications, vol 1. Academic Press, New York (1975)zbMATHGoogle Scholar
  7. 7.
    Joffe A., Métivier M.: Weak convergence of sequences of semi-martingales with applications to multitype branching processes. Adv. Appl. Probab. 18, 20–65 (1986)zbMATHCrossRefGoogle Scholar
  8. 8.
    Kurtz, Th., Protter, Ph.: Weak convergence of stochastic integrals and differential equations. In: Probabilistic models for nonlinear partial differential equations. Lecture Notes in Math, vol. 1627, pp. 1–41 (1996)Google Scholar
  9. 9.
    Lambert A.: The branching process with logistic growth. Ann. Appl. Probab. 15, 1506–1535 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Liptser R.S., Shiryayev A.N.: Theory of martingales. Kluwer Academic Publishers, Dordrecht (1989)zbMATHCrossRefGoogle Scholar
  11. 11.
    Méléard, S.: Quasi-stationary distributions for population processes. Lecture at CIMPA school, St Louis, Sénégal (2010) http://www.cmi.univ-mrs.fr/~pardoux/Ecole_CIMPA/CoursSMeleard.pdf
  12. 12.
    Norris J.R., Rogers L.C.G., Williams D.: Self-avoiding random walk: a Brownian motion model with local time drift. Probab. Theory Relat. Fields 74, 271–287 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Pardoux, E., Wakolbinger, A.: From exploration paths to mass excursions—variations on a theme of Ray and Knight. In: Blath, J., Imkeller, P., Roelly, S. (eds.) Surveys in Stochastic Processes, Proceedings of the 33rd SPA Conference in Berlin, 2009, pp. 87–106. EMS (2011)Google Scholar
  14. 14.
    Pardoux E., Wakolbinger A.: From Brownian motion with a local time drift to Feller’s branching diffusion with logistic growth. Elec. Commun. Probab. 16, 720–731 (2011)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Perkins E.: Weak invariance principles for local time. Z. Wahrscheinlichkeitstheorie verw. Gebiete 60, 437–451 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Revuz D., Yor M.: Continuous martingales and Brownian motion, 3rd edn. Spinger Verlag, New York (1999)zbMATHCrossRefGoogle Scholar
  17. 17.
    Stroock D.W.: Probability theory: an analytic view. Cambridge University Press, Cambridge (1993)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Laboratoire d’Analyse, Topologie, ProbabilitésAix-Marseille UniversitéMarseille Cedex 13France
  2. 2.Institut für MathematikGoethe-Universität FrankfurtFrankfurt am MainGermany

Personalised recommendations