Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A solvable mixed charge ensemble on the line: global results

  • 159 Accesses

  • 5 Citations


We consider an ensemble of interacting charged particles on the line consisting of two species of particles with charge ratio 2:1 in the presence of an external field. With the total charge fixed and the system held at temperature corresponding to β = 1, it is proved that the particles form a Pfaffian point process. When the external field is quadratic (the harmonic oscillator potential), we produce the explicit family of skew-orthogonal polynomials necessary to simplify the related matrix kernels. In this setting a variety of limit theorems are proved on the distribution of the number as well as the spatial density of each species of particle as the total charge increases to infinity. Connections to Ginibre’s real ensemble of random matrix theory are highlighted throughout.

This is a preview of subscription content, log in to check access.


  1. 1

    Adler M., Forrester P.J., Nagao T., van Moerbeke P.: Classical skew orthogonal polynomials and random matrices. J. Stat. Phys. 99(1–2), 141–170 (2000)

  2. 2

    Ben Arous G., Guionnet A.: Large deviations for Wigner’s law and Voiculescu’s non-commutative entropy. Probab. Theory Relat. Fields 108(4), 517–542 (1997)

  3. 3

    Ben Arous G., Zeitouni O.: Large deviations from the circular law. ESAIM Probab. Stat. 2, 123–134 (1998)

  4. 4

    Borodin A., Sinclair C.D.: The Ginibre ensemble of real random matrices and its scaling limits. Commun. Math. Phys. 291(1), 177–224 (2009)

  5. 5

    Borwein D., Borwein J.M., Crandall R.E.: Effective Laguerre asymptotics. SIAM J. Numer. Anal. 46(6), 3285–3312 (2008)

  6. 6

    Edelman A., Kostlan E., Shub M.: How many eigenvalues of a random matrix are real?. J. Am. Math. Soc. 7(1), 247–267 (1994)

  7. 7

    Forrester P.J.: Log-gases and random matrices. London Mathematical Society Monographs. Princeton University Press, Princeton (2010)

  8. 8

    Forrester, P.J., Nagao, T.: Eigenvalue statistics of the real Ginibre ensemble. Phys. Rev. Lett. 99 (2007)

  9. 9

    Ginibre J.: Statistical ensembles of complex, quaternion, and real matrices. J. Math. Phys. 6, 440–449 (1965)

  10. 10

    Larsson-Cohn L.: L p norms of Hermite polynomials and an extremal problem on Wiener chaos. Ark. Mat. 40, 133–144 (2002)

  11. 11

    Majumdar S.N., Schehr G.: Real roots of random polynomials and zero crossing properties of diffusion equation. J. Stat. Phys. 132, 235–273 (2008)

  12. 12

    Meray C.: Sur un determinant dont celui de Vandermonde n’est qu’un particulier. Revue de Mathématiques Spéciales 9, 217–219 (1899)

  13. 13

    Rains, E.M.: Correlation functions for symmetrized increasing subsequences. http://arXiv.org:math/0006097 (2000)

  14. 14

    Sinclair C.D.: Averages over Ginibre’s ensemble of random real matrices. Int. Math. Res. Not. 2007, 1–15 (2007)

  15. 15

    Sommers, H.-J., Wieczorek, W.: General eigenvalue correlations for the real Ginibre ensemble. J. Phys. A 41(40) (2008)

  16. 16

    Stembridge J.R.: Nonintersecting paths, Pfaffians, and plane partitions. Adv. Math. 83(1), 96–131 (1990)

  17. 17

    Szegő, G.: Orthogonal Polynomials, vol. XXIII, 4th edn. American Mathematical Society, Providence. American Mathematical Society, Colloquium Publications (1975)

Download references

Author information

Correspondence to Brian Rider.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rider, B., Sinclair, C.D. & Xu, Y. A solvable mixed charge ensemble on the line: global results. Probab. Theory Relat. Fields 155, 127–164 (2013). https://doi.org/10.1007/s00440-011-0394-z

Download citation


  • Random matrix
  • Eigenvalue statistics
  • Pfaffian processes

Mathematics Subject Classification (2000)

  • 60B20
  • 82B05