Probability Theory and Related Fields

, Volume 153, Issue 3–4, pp 511–542 | Cite as

The self-dual point of the two-dimensional random-cluster model is critical for q ≥ 1

Article

Abstract

We prove a long-standing conjecture on random-cluster models, namely that the critical point for such models with parameter q ≥ 1 on the square lattice is equal to the self-dual point \({p_{sd}(q) = \sqrt{q} / (1+\sqrt{q})}\). This gives a proof that the critical temperature of the q-state Potts model is equal to \({\log (1+\sqrt q)}\) for all q ≥ 2. We further prove that the transition is sharp, meaning that there is exponential decay of correlations in the sub-critical phase. The techniques of this paper are rigorous and valid for all q ≥ 1, in contrast to earlier methods valid only for certain given q. The proof extends to the triangular and the hexagonal lattices as well.

Mathematics Subject Classification (2000)

60K35 82B20 (primary) 82B26 82B43 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aizenman M., Barsky D.J., Fernández R.: The phase transition in a general class of Ising-type models is sharp. Commun. Math. Phys. 47, 343–374 (1987)Google Scholar
  2. 2.
    Beffara, V., Duminil-Copin, H.: Criticality of the square lattice Ising model, the easy way (in preparation)Google Scholar
  3. 3.
    Bezuidenhout C.E., Grimmett G.R., Kesten H.: Strict inequality for critical values of Potts models and random-cluster processes. Commun. Math. Phys. 158, 1–16 (1993)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Bollobás B., Riordan O.: The critical probability for random Voronoi percolation in the plane is 1/2. Probab. Theory Relat. Fields. 136, 417–468 (2006)MATHCrossRefGoogle Scholar
  5. 5.
    Burton R.M., Keane M.: Density and uniqueness in percolation. Commun. Math. Phys. 121, 501–505 (1989)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Campanino M., Ioffe Y., Velenik D.: Fluctuation theory of connectivities for subcritical random-cluster models. Ann. Probab. 36, 1287–1321 (2008)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Cox J.T., Gandolfi A., Griffin P., Kesten H.: Greedy lattice animals I: upper bounds. Adv. Appl. Probab. 3, 1151–1169 (1993)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Duminil-Copin, H., Hongler, C., Nolin, P.: Connection probabilities and RSW-type bounds for the FK Ising model. arXiv:0912.4253 (2009)Google Scholar
  9. 9.
    Fontes, L.R., Newman, C.M.: First-passage percolation for random colorings of \({\mathbb{Z}^d}\). Ann. Appl. Probab. 3 746–762, erratum 4 254 (1993)Google Scholar
  10. 10.
    Fortuin C.M., Kasteleyn R.W.: On the random-cluster model I. Introduction and relation to other models. Physica. 57, 536–564 (1972)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Friedgut E.: Influence in product spaces: KKL and BKKKL revisited. Combinatorics Probab. Comput. 13, 17–29 (2004)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Friedgut E., Kalai G.: Every monotone graph has a sharp threshold. Proc. Am. Math. Soc. 124, 2993–3002 (1996)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Graham B.T., Grimmett G.R.: Influence and sharp threshold theorems for monotonic measures. Ann. Probab. 34, 1726–1745 (2006)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Graham B.T., Grimmett G.R.: Sharp thresholds for the random-cluster and Ising models. Ann. Appl. Probab. 21, 240–265 (2011)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Grimmett G.R.: Percolation, 2nd edn. Springer, Berlin (1999)MATHGoogle Scholar
  16. 16.
    Grimmett G.R.: The random-cluster model (corrected reprint). Springer, Berlin (2006)CrossRefGoogle Scholar
  17. 17.
    Grimmett G.R., Piza M.S.T.: Decay of correlations in subcritical Potts and random-cluster models. Commun. Math. Phys. 189, 465–480 (1997)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Hintermann A., Kunz H., Wu F.Y.: Exact results for the Potts model in two dimensions. J. Stat. Phys. 19, 623–632 (1978)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Kahn, J., Kalai, G., Linial, N.: The influence of variables on Boolean functions. In: Proceedings of 29th Symposium on the Foundations of Computer Science, pp. 68–80. Computer Science Press, New York (1988)Google Scholar
  20. 20.
    Kalai G., Safra S.: Threshold phenomena and influence. Computational Complexity and Statistical Physics. Oxford University Press, New York (2006)Google Scholar
  21. 21.
    Kesten H.: The critical probability of edge percolation on the square lattice equals 1/2. Commun. Math. Phys. 74, 41–59 (1980)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Kramers H.A., Wannier G.H.: Statistics of the two-dimensional ferromagnet I. Phys. Rev. Lett. 60, 252–262 (1941)MathSciNetGoogle Scholar
  23. 23.
    Laanait L., Messager A., Miracle-Solé S., Ruiz J., Shlosman S.: Interfaces in the Potts model. I. Pirogov–Sinai theory of the Fortuin–Kasteleyn representation. Commun. Math. Phys. 140, 81–91 (1991)MATHCrossRefGoogle Scholar
  24. 24.
    Laanait L., Messager A., Ruiz J.: Phases coexistence and surface tensions for the Potts model. Commun. Math. Phys. 105, 527–545 (1986)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Onsager L.: Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. Lett. 2(65), 117–149 (1944)MathSciNetGoogle Scholar
  26. 26.
    Russo L.: On the critical percolation probabilities. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 56, 229–237 (1981)MATHCrossRefGoogle Scholar
  27. 27.
    Smirnov, S.: Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model. Ann. Math. (2011, in press)Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Unité de Mathématiques Pures et AppliquéesÉcole Normale Supérieure de LyonLyon Cedex 7France
  2. 2.Département de MathématiquesUniversité de GenèveGenevaSwitzerland

Personalised recommendations