Probability Theory and Related Fields

, Volume 153, Issue 1–2, pp 97–147

Non-linear rough heat equations



This article is devoted to define and solve an evolution equation of the form dyt = Δytdt + dXt (yt), where Δ stands for the Laplace operator on a space of the form \({L^p(\mathbb R^n)}\), and X is a finite dimensional noisy nonlinearity whose typical form is given by \({X_t(\varphi)=\sum_{i=1}^N \, x^{i}_t f_i(\varphi)}\), where each x = (x(1), … , x(N)) is a γ-Hölder function generating a rough path and each fi is a smooth enough function defined on \({L^p(\mathbb R^n)}\). The generalization of the usual rough path theory allowing to cope with such kind of system is carefully constructed.


Rough paths theory Stochastic PDEs Fractional Brownian motion 

Mathematics Subject Classification (2000)

60H05 60H07 60G15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams R.A.: Sobolev Spaces. Academic Press, New York (1975)MATHGoogle Scholar
  2. 2.
    Bardina X., Jolis M.: Multiple fractional integral with Hurst parameter less than \({\frac 12}\). Stoch. Process. Appl. 116(3), 463–479 (2006)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Brzeźniak Z.: On stochastic convolution in Banach spaces and applications. Stoch. Stoch. Rep. 61(3–4), 245–295 (1997)MATHGoogle Scholar
  4. 4.
    Brzeźniak Z., Peszat S.: Space-time continuous solutions to SPDE’s driven by a homogeneous Wiener process. Stud. Math. 137(3), 261–299 (1999)MATHGoogle Scholar
  5. 5.
    Caruana M., Friz P.: Partial differential equations driven by rough paths. J. Differ. Equ. 247(1), 140–173 (2009)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Caruana, M., Friz, P., Oberhauser, H.: A (rough) pathwise approach to a class of non-linear stochastic partial differential equations. arXiv:0902.3352 [math.AP] (2009, preprint)Google Scholar
  7. 7.
    Coutin L., Qian Z.: Stochastic rough path analysis and fractional Brownian motion. Probab. Theory Relat. Fields 122, 108–140 (2002)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Dalang R.: Extending martingale measure stochastic integral with applications to spatially homogeneous S.P.D.E’s. Electron. J. Probab. 4, 1–29 (1999)MathSciNetGoogle Scholar
  9. 9.
    Da Prato, G., Zabczyk, J.: Stochastic equations in infinite dimensions. In: Encyclopedia of Mathematics and its Applications, vol. 44. Cambridge University Press, Cambridge (1992)Google Scholar
  10. 10.
    Davies, E.B.: Heat kernels and spectral theory. In: Cambridge Tracts in Mathematics, vol. 92. Cambridge University Press, Cambridge (1990)Google Scholar
  11. 11.
    Deya, A.: Numerical schemes for the rough heat equation. arXiv:1003.0587 [math.PR] (2010, preprint)Google Scholar
  12. 12.
    Deya A., Tindel S.: Rough Volterra equations 1: the algebraic integration setting. Stoch. Dyn. 9, 437–477 (2009)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Deya, A., Tindel, S.: Rough Volterra equations 2: convolutional generalized integrals. arXiv:0810.1824 [math.PR] (2008, preprint)Google Scholar
  14. 14.
    Diehl, J., Friz, P.: Backward stochastic differential equations with rough drivers. arXiv:1008.0290 [math.PR] (2010, preprint)Google Scholar
  15. 15.
    Engel, K.-J., Nagel, R.: One-parameter semigroups for linear evolution equations. In: Graduate Texts in Mathematics, vol. 194. Springer-Verlag, New York (2000)Google Scholar
  16. 16.
    Fattorini, H.O.: Infinite-dimensional optimization and control theory. In: Encyclopedia of Mathematics and its Applications, vol. 62. Cambridge University Press, Cambridge (1999)Google Scholar
  17. 17.
    Friedman A.: Partial Differential Equations of Parabolic Type. Prentice-Hall Inc., Englewood Cliffs (1964)MATHGoogle Scholar
  18. 18.
    Friz P., Victoir N.: Multidimensional Dimensional Processes Seen as Rough Paths. Cambridge University Press, Cambridge (2010)Google Scholar
  19. 19.
    Friz, P., Oberhauser, H.: Rough path stability of SPDEs arising in non-linear filtering. arXiv:1005.1781 [math.AP] (2010, preprint)Google Scholar
  20. 20.
    Gubinelli M.: Controlling rough paths. J. Funct. Anal. 216, 86–140 (2004)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Gubinelli, M.: Ramification of rough paths. arXiv:math.CA/0610300 (2006, preprint)Google Scholar
  22. 22.
    Gubinelli, M.: Rough solutions for the periodic Korteweg-de Vries equation. arXiv:math/0610006 (2006, preprint)Google Scholar
  23. 23.
    Gubinelli, M.: Abstract integration, combinatorics of trees and differential equations. arXiv:0809.1821 (2008, preprint). Proceedings of the Conference on Combinatorics and Physics, MPI Bonn (2007, to appear)Google Scholar
  24. 24.
    Gubinelli M., Lejay A., Tindel S.: Young integrals and SPDEs. Potential Anal. 25, 307–326 (2006)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Gubinelli, M., Tindel, S.: Rough evolution equations. arXiv:0803.0552 [math.PR] (2008, preprint). Ann. Probab. (to appear)Google Scholar
  26. 26.
    Hirsch F.: Lipschitz functions and fractional Sobolev spaces. Potential Anal. 11, 415–429 (1999)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Krylov, N.V.: An analytic approach to SPDEs Stochastic partial differential equations: six perspectives. Math. Surveys Monogr. 64, 185–242. Amer. Math. Soc., Providence (1999)Google Scholar
  28. 28.
    Lejay, A.: An introduction to rough paths. In: Séminaire de Probabilités 37. Lecture Notes in Mathematics, vol. 1832, pp. 1–59. Springer-Verlag, Heidelberg (2003)Google Scholar
  29. 29.
    Ledoux M., Lyons T., Qian Z.: Lévy area of Wiener processes in Banach spaces. Ann. Probab. 30(2), 546–578 (2002)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    León J., San Martin J.: Linear stochastic differential equations driven by a fractional Brownian motion with Hurst parameter less than 1/2. Stoch. Stoch. Rep. 25, 105–126 (2007)MATHGoogle Scholar
  31. 31.
    Lototsky S., Rozovsky B.: Wiener chaos solutions of linear stochastic evolution equations. Ann. Probab. 34, 638–662 (2006)MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Lyons T., Qian Z.: System Control and Rough Paths. Oxford University Press, Oxford (2002)MATHCrossRefGoogle Scholar
  33. 33.
    Lyons T.: Differential equations driven by rough signals. Rev. Mat. Iberoam. 14(2), 215–310 (1998)MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Martinez Carracedo, C., Sanz Alix, M.: The Theory of Fractional Powers of Operators. North Holland (2001)Google Scholar
  35. 35.
    Maslowski B., Nualart D.: Evolution equations driven by a fractional Brownian motion. J. Funct. Anal. 202(1), 277–305 (2003)MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Neueunkirch, A., Nourdin, I., Tindel, S.: Delay equations driven by rough paths. Electron. J. Probab. (2007)Google Scholar
  37. 37.
    Nualart D.: Malliavin Calculus and Related Topics. Springer, New York (1995)MATHGoogle Scholar
  38. 38.
    Pérez-Abreu V., Tudor C.: Transfer principle for stochastic fractional integral. Bol. Soc. Mat. Mexicana 8, 55–71 (2002)Google Scholar
  39. 39.
    Peszat S., Zabczyk J.: Nonlinear stochastic wave and heat equations. Probab. Theory Relat. Fields 116(3), 421–443 (2000)MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Pazy, A.: Semigroups of linear operators and applications to partial differential equations. In: Applied Mathematical Sciences, vol. 44. Springer-Verlag, New York (1983)Google Scholar
  41. 41.
    Prüss J., Sohr H.: Imaginary powers of elliptic second order differential operators in L p-spaces, 1993. Hiroshima Math. J 23(1), 161–192 (1993)MathSciNetMATHGoogle Scholar
  42. 42.
    Quer-Sardanyons L., Tindel S.: The 1-d stochastic wave equation driven by a fractional Brownian sheet. Stoch. Process. Appl. 117(10), 1448–1472 (2007)MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Stein E.M.: Singular Integrals and Differentiabilty Properties of Functions. Princeton University Press, Princeton (1970)Google Scholar
  44. 44.
    Strichartz R.: Multipliers on fractional Sobolev spaces. J. Math. Mech. 16, 1031–1060 (1967)MathSciNetMATHGoogle Scholar
  45. 45.
    Teichmann, J.: Another approach to some rough and stochastic partial differential esquations. arXiv:0908.2814 [math.PR] (2009, preprint)Google Scholar
  46. 46.
    Tindel, S., Torrecilla, I.: Some differential systems driven by a fBm with Hurst parameter greater than 1/4. arXiv:0901.2010 [math.PR] (2009, preprint)Google Scholar
  47. 47.
    Tindel S., Tudor C.A., Viens F.: Stochastic evolution equations with fractional Brownian motion. Probab. Theory Relat. Fields 127(2), 186–204 (2003)MathSciNetMATHCrossRefGoogle Scholar
  48. 48.
    Tindel, S., Unterberger, J.: The rough path associated to the multidimensional analytic fbm with any Hurst parameter. arXiv:0810.1408 [math.PR] (2008, preprint)Google Scholar
  49. 49.
    Unterberger J.: Stochastic calculus for fractional Brownian motion with Hurst exponent H > 1/4: a rough path method by analytic extension. Ann. Probab. 37(2), 565–614 (2009)MathSciNetMATHCrossRefGoogle Scholar
  50. 50.
    Walsh, J.B.: An introduction to stochastic partial differential equations. In: École d’été de probabilités de Saint-Flour, XIV—1984. Lecture Notes in Mathematics, vol. 1180, pp. 265–439. Springer, Berlin (1986)Google Scholar
  51. 51.
    Young L.C.: An inequality of Hölder type, connected with Stieljes integration. Acta Math. 67, 251–282 (1936)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Zähle M.: Integration with respect to fractal functions and stochastic calculus. I. Probab. Theory Relat. Fields 111(3), 333–374 (1998)MATHCrossRefGoogle Scholar
  53. 53.
    Zhang X.: L p-theory of semi-linear SPDEs on general measure spaces and applications. J. Funct. Anal. 239(1), 44–75 (2006)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Institut Élie Cartan NancyUniversité de NancyVanœduvre-lès-Nancy CedexFrance
  2. 2.CEREMADE, Université de Paris-DauphineParisFrance

Personalised recommendations