Probability Theory and Related Fields

, Volume 152, Issue 3–4, pp 703–749 | Cite as

Risk aversion asymptotics for power utility maximization

Article

Abstract

We consider the economic problem of optimal consumption and investment with power utility. We study the optimal strategy as the relative risk aversion tends to infinity or to one. The convergence of the optimal consumption is obtained for general semimartingale models while the convergence of the optimal trading strategy is obtained for continuous models. The limits are related to exponential and logarithmic utility. To derive these results, we combine approaches from optimal control, convex analysis and backward stochastic differential equations (BSDEs).

Keywords

Power utility Risk aversion asymptotics Opportunity process BSDE 

Mathematics Subject Classification (2000)

Primary 91B28 Secondary 93E20 60G44 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ansel, J.P., Stricker, C.: Décomposition de Kunita–Watanabe. In: Séminaire de Probabilités XXVII. Lecture Notes in Math., vol. 1557, pp. 30–32. Springer, Berlin (1993)Google Scholar
  2. 2.
    Becherer D.: Bounded solutions to backward SDE’s with jumps for utility optimization and indifference hedging. Ann. Appl. Probab. 16(4), 2027–2054 (2006)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Biagini S., Frittelli M.: Utility maximization in incomplete markets for unbounded processes. Finance Stoch. 9(4), 493–517 (2005)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Biagini S., Frittelli M.: The supermartingale property of the optimal wealth process for general semimartingales. Finance Stoch. 11(2), 253–266 (2007)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Carassus L., Rásonyi M.: Convergence of utility indifference prices to the superreplication price. Math. Methods Oper. Res. 64(1), 145–154 (2006)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Delbaen F., Monat P., Schachermayer W., Schweizer M., Stricker C.: Weighted norm inequalities and hedging in incomplete markets. Finance Stoch. 1(3), 181–227 (1997)MATHCrossRefGoogle Scholar
  7. 7.
    Delbaen F., Schachermayer W.: The fundamental theorem of asset pricing for unbounded stochastic processes. Math. Ann. 312, 215–250 (1998)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Dellacherie C., Meyer P.A.: Probabilities and Potential B. North Holland, Amsterdam (1982)MATHGoogle Scholar
  9. 9.
    Émery, M.: Une topologie sur l’espace des semimartingales. In: Séminaire de Probabilités XIII. Lecture Notes in Math., vol. 721, pp. 260–280. Springer, Berlin (1979)Google Scholar
  10. 10.
    Frei, C., Schweizer, M.: Exponential utility indifference valuation in a general semimartingale model. In: Delbaen, F., Rásonyi, M., Stricker, C. (eds) Optimality and Risk—Modern Trends in Mathematical Finance. The Kabanov Festschrift, pp. 49–86. Springer, Berlin (2009)Google Scholar
  11. 11.
    Goll T., Kallsen J.: Optimal portfolios for logarithmic utility. Stoch. Process. Appl. 89(1), 31–48 (2000)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Goll T., Kallsen J.: A complete explicit solution to the log-optimal portfolio problem. Ann. Appl. Probab. 13(2), 774–799 (2003)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Gollier C.: The Economics of Risk and Time. MIT Press, Cambridge (2001)MATHGoogle Scholar
  14. 14.
    Grandits P., Rheinländer T.: On the minimal entropy martingale measure. Ann. Probab. 30(3), 1003–1038 (2002)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Grandits P., Summer C.: Risk averse asymptotics and the optional decomposition. Theory Probab. Appl. 51(2), 325–334 (2007)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Grasselli M.: A stability result for the HARA class with stochastic interest rates. Insurance Math. Econ. 33(3), 611–627 (2003)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Jacod J., Shiryaev A.N.: Limit Theorems for Stochastic Processes, 2nd edn. Springer, Berlin (2003)MATHGoogle Scholar
  18. 18.
    Jouini E., Napp C.: Convergence of utility functions and convergence of optimal strategies. Finance Stoch. 8(1), 133–144 (2004)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Kabanov Yu., Stricker C.: On the optimal portfolio for the exponential utility maximization: Remarks to the six-author paper. Math. Finance. 12, 125–134 (2002)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Karatzas I., Žitković G.: Optimal consumption from investment and random endowment in incomplete semimartingale markets. Ann. Probab. 31(4), 1821–1858 (2003)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Kardaras, C., Žitković, G.: Stability of the utility maximization problem with random endowment in incomplete markets. Math. Finance (To appear)Google Scholar
  22. 22.
    Kobylanski M.: Backward stochastic differential equations and partial differential equations with quadratic growth. Ann. Probab. 28(2), 558–602 (2000)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Larsen K.: Continuity of utility-maximization with respect to preferences. Math. Finance 19(2), 237–250 (2009)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Mania M., Schweizer M.: Dynamic exponential utility indifference valuation. Ann. Appl. Probab. 15(3), 2113–2143 (2005)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Mania M., Tevzadze R.: A unified characterization of the q-optimal and minimal entropy martingale measures. Georgian Math. J. 10(2), 289–310 (2003)MathSciNetMATHGoogle Scholar
  26. 26.
    Nutz, M.: The Bellman equation for power utility maximization with semimartingales. Preprint arXiv:0912.1883v1 (2009)Google Scholar
  27. 27.
    Nutz M.: The opportunity process for optimal consumption and investment with power utility. Math. Financ. Econ. 3(3), 139–159 (2010)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Protter P.: An extension of Kazamaki’s results on BMO differentials. Ann. Probab. 8(6), 1107–1118 (1980)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Santacroce M.: On the convergence of the p-optimal martingale measures to the minimal entropy martingale measure. Stoch. Anal. Appl. 23(1), 31–54 (2005)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Schachermayer W.: Optimal investment in incomplete markets when wealth may become negative. Ann. Appl. Probab. 11(3), 694–734 (2001)MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Schweizer M.: On the minimal martingale measure and the Föllmer-Schweizer decomposition. Stoch. Anal. Appl. 13, 573–599 (1995)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of MathematicsETH ZurichZurichSwitzerland

Personalised recommendations