Probability Theory and Related Fields

, Volume 151, Issue 3–4, pp 735–756 | Cite as

Critical percolation: the expected number of clusters in a rectangle

Article

Abstract

We show that for critical site percolation on the triangular lattice two new observables have conformally invariant scaling limits. In particular the expected number of clusters separating two pairs of points converges to an explicit conformal invariant. Our proof is independent of earlier results and SLE techniques, and might provide a new approach to establishing conformal invariance of percolation.

Mathematics Subject Classification (2000)

Primary 60K35 Secondary 30C35 81T40 82B43 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aizenman M., Duplantier B., Aharony A.: Path-crossing exponents and the external perimeter in 2D percolation. Phys. Rev. Lett. 83, 1359–1362 (1999)CrossRefGoogle Scholar
  2. 2.
    Beffara, V.: Cardy’s formula on the triangular lattice, the easy way. In: Universality and Renormalization, pp. 39–45. Fields Inst. Commun., vol. 50. Amer. Math. Soc., Providence (2007)Google Scholar
  3. 3.
    Bollobás B., Riordan O.: Percolation. Cambridge University Press, Cambridge (2006)MATHGoogle Scholar
  4. 4.
    Cardy J.: Critical percolation in finite geometries. J. Phys. A 25, L201–L206 (1992)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Cardy, J.: Conformal Invariance and Percolation. arXiv:math-ph/0103018Google Scholar
  6. 6.
    Camia F., Newman C.: Critical percolation exploration path and SLE 6: a proof of convergence. Probab. Theory Relat. Fields 139(3), 473–519 (2007)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Dubédat J.: Excursion decompositions for SLE and Watts’ crossing formula. Probab. Theory Relat. Fields 3, 453–488 (2006)CrossRefGoogle Scholar
  8. 8.
    Grimmett G.: Percolation, 2nd edn. Springer-Verlag, Berlin (1999)MATHGoogle Scholar
  9. 9.
    Kesten H.: Percolation Theory for Mathematicians. Birkäuser, Boston (1982)MATHGoogle Scholar
  10. 10.
    Lawler, G.F.: Conformally Invariant Processes in the Plane, vol. 114. Mathematical Surveys and Monographs (2005)Google Scholar
  11. 11.
    Maier R.S.: On crossing event formulas in critical two-dimensional percolation. J. Stat. Phys. 111, 1027–1048 (2003)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Sheffield, S., Wilson, D.B.: Schramm’s proof of Watts’ formula. arXiv:math-ph/1003.3271Google Scholar
  13. 13.
    Simmons J.H., Kleban P., Ziff R.M.: Percolation crossing formulae and conformal field theory. J. Phys. A 40(31), F771–F784 (2007)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Smirnov S.: Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits. C. R. Acad. Sci. Paris Sr. I Math. 333, 239–244 (2001)MATHCrossRefGoogle Scholar
  15. 15.
    Smirnov, S.: Critical percolation in the plane. Preprint. arXiv:0909.4490 (2001)Google Scholar
  16. 16.
    Smirnov, S.: Critical percolation and conformal invariance. In: XIVth International Congress on Mathematical Physics (Lissbon, 2003), pp. 99–112. World Scientific Publication, Hackensack (2003)Google Scholar
  17. 17.
    Smirnov, S.: Towards conformal invariance of 2D lattice models. In: Sanz-Sole, M., et al. (eds.) Proceedings of the International Congress of Mathematicians (ICM), Madrid, Spain, 22–30 August 2006. Volume II: Invited Lectures, pp. 1421–1451. European Mathematical Society (EMS), Zurich (2006)Google Scholar
  18. 18.
    Smirnov S., Werner W.: Critical exponents for two-dimensional percolation. Math. Res. Lett. 8(5–6), 729–744 (2001)MathSciNetMATHGoogle Scholar
  19. 19.
    Watts G.M.T.: A crossing probability for critical percolation in two dimensions. J. Phys. A29, L363 (1996)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Section de MathématiquesUniversité de GenèveGeneva 4Switzerland

Personalised recommendations