Probability Theory and Related Fields

, Volume 151, Issue 1–2, pp 125–151 | Cite as

Faces of Poisson–Voronoi mosaics



For a stationary Poisson–Voronoi tessellation in Euclidean d-space and for \({k\in \{1,\dots,d\}}\), we consider the typical k-dimensional face with respect to a natural centre function. We express the distribution of this typical k-face in terms of a certain Poisson process of closed halfspaces in a k-dimensional space. Then we show that, under the condition of large inradius, the relative boundary of the typical k-face lies, with high probability, in a narrow spherical annulus.


Poisson–Voronoi tessellation Typical k-face Spherical shape 

Mathematics Subject Classification (2000)

60D05 52A20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baumstark V., Last G.: Some distributional results for Poisson–Voronoi tessellations. Adv. Appl. Probab. (SGSA) 39, 16–40 (2007)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Calka P.: The distributions of the smallest disks containing the Poisson–Voronoi typical cell and the Crofton cell in the plane. Adv. Appl. Probab. (SGSA) 34, 702–717 (2002)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Calka P., Schreiber T.: Limit theorems for the typical Poisson–Voronoi cell and the Crofton cell with a large inradius. Ann. Probab. 33, 1625–1642 (2005)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Calka P., Schreiber T.: Large deviation probabilities for the number of vertices of random polytopes in the ball. Adv. Appl. Probab. (SGSA) 38, 47–58 (2006)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Hug D., Reitzner M., Schneider R.: Large Poisson–Voronoi cells and Crofton cells. Adv. Appl. Probab. (SGSA) 36, 667–690 (2004)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Hug D., Schneider R.: Asymptotic shapes of large cells in random tessellations. Geom. Funct. Anal. 17, 156–191 (2007)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Hug, D., Schneider, R.: Large faces in Poisson hyperplane mosaics. Ann. Probab. (to appear)Google Scholar
  8. 8.
    Miles R.E.: Sectional Voronoi tessellations. Rev. Un. Mat. Argentina 29, 310–327 (1984)Google Scholar
  9. 9.
    Møller J.: Random tessellations in \({{\mathbb R}^{d}}\). Adv. Appl. Probab. 21, 37–73 (1989)CrossRefGoogle Scholar
  10. 10.
    Møller J.: Lectures on Random Voronoi Tessellations. Lecture Notes in Statist., vol. 87. Springer, New York (1994)CrossRefGoogle Scholar
  11. 11.
    Okabe A., Boots B., Sugihara K., Chiu S.N.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, 2nd edn. Wiley, Chichester (2000)MATHGoogle Scholar
  12. 12.
    Schneider R.: Weighted faces of Poisson hyperplane tessellations. Adv. Appl. Probab. (SGSA) 41, 682–694 (2009)MATHCrossRefGoogle Scholar
  13. 13.
    Schneider R., Weil W.: Stochastische Geometrie. Teubner, Stuttgart (2000)MATHGoogle Scholar
  14. 14.
    Schneider R., Weil W.: Stochastic and Integral Geometry. Springer, Berlin (2008)MATHCrossRefGoogle Scholar
  15. 15.
    Stoyan D., Kendall W.S., Mecke J.: Stochastic Geometry and its Applications, 2nd edn. Wiley, Chichester (1995)MATHGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of MathematicsKarlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.Mathematisches InstitutAlbert-Ludwigs-UniversitätFreiburgGermany

Personalised recommendations