Probability Theory and Related Fields

, Volume 149, Issue 1–2, pp 191–222 | Cite as

Spatial random permutations with small cycle weights

  • Volker Betz
  • Daniel UeltschiEmail author


We consider the distribution of cycles in two models of random permutations, that are related to one another. In the first model, cycles receive a weight that depends on their length. The second model deals with permutations of points in the space and there is an additional weight that involves the length of permutation jumps. We prove the occurrence of infinite macroscopic cycles above a certain critical density.


Random permutations Cycle weights Spatial permutations Infinite cycles 

Mathematics Subject Classification (2000)

60K35 82B20 82B26 82B41 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baik J., Deift P., Johannson K.: On the distribution of the length of the longest increasing subsequence of random permutations. J. Am. Math. Soc. 12, 1119–1178 (1999)zbMATHCrossRefGoogle Scholar
  2. 2.
    Betz V., Ueltschi D.: Spatial random permutations and infinite cycles. Commun. Math. Phys. 285, 469–501 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Betz, V., Ueltschi, D., Velenik, Y.: Random permutations with cycle weights. (2009)
  4. 4.
    Buffet E., Pulé J.V.: Fluctuation properties of the imperfect Bose gas. J. Math. Phys. 24, 1608–1616 (1983)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Ewens W.J.: The sampling theory of selectively neutral alleles. Theor. Popul. Biol. 3, 87–112 (1972)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Feng S., Hoppe F.M.: Large deviation principles for some random combinatorial structures in population genetics and Brownian motion. Ann. Appl. Probab. 8, 975–994 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Ferrari, P., Prähofer, M., Spohn, H.: Stochastic growth in one dimension and Gaussian multi-matrix models. In: XIVth International Congress on Mathematical Physics. World Scientific, Singapore (2005)Google Scholar
  8. 8.
    Feynman R.P.: Atomic theory of the λ transition in Helium. Phys. Rev. 91, 1291–1301 (1953)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Gandolfo D., Ruiz J., Ueltschi D.: On a model of random cycles. J. Stat. Phys. 129, 663–676 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Okounkov, A.: The uses of random partitions. In: XIVth International Congress on Mathematical Physics, pp. 379–403. World Scientific, Singapore (2005)Google Scholar
  11. 11.
    Pitman J.: Exchangeable and partially exchangeable random partitions. Probab. Theory Rel. Fields 102, 145–158 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Ruelle D.: Statistical Mechanics: Rigorous Results. World Scientific, Singapore (1999)Google Scholar
  13. 13.
    Schramm, O.: Compositions of random transpositions. (2004)
  14. 14.
    Shepp L.A., Lloyd S.P.: Ordered cycle lengths in a random permutation. Trans. Am. Math. Soc. 121(2), 340–357 (1966)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Sütő A.: Percolation transition in the Bose gas. J. Phys. A 26, 4689–4710 (1993)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Sütő A.: Percolation transition in the Bose gas II. J. Phys. A 35, 6995–7002 (2002)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of WarwickCoventryEngland

Personalised recommendations