Abstract
The purpose of this paper is to estimate the intensity of some random measure N on a set \({\mathcal{X}}\) by a piecewise constant function on a finite partition of \({\mathcal{X}}\) . Given a (possibly large) family \({\mathcal{M}}\) of candidate partitions, we build a piecewise constant estimator (histogram) on each of them and then use the data to select one estimator in the family. Choosing the square of a Hellinger-type distance as our loss function, we show that each estimator built on a given partition satisfies an analogue of the classical squared bias plus variance risk bound. Moreover, the selection procedure leads to a final estimator satisfying some oracle-type inequality, with, as usual, a possible loss corresponding to the complexity of the family \({\mathcal{M}}\) . When this complexity is not too high, the selected estimator has a risk bounded, up to a universal constant, by the smallest risk bound obtained for the estimators in the family. For suitable choices of the family of partitions, we deduce uniform risk bounds over various classes of intensities. Our approach applies to the estimation of the intensity of an inhomogenous Poisson process, among other counting processes, or the estimation of the mean of a random vector with nonnegative components.
This is a preview of subscription content, log in to check access.
References
- 1.
Andersen P., Borgan O., Gill R. and Keiding N. (1993). Statistical Models Based on Counting Processes. Springer, New York
- 2.
Antoniadis A. (1989). A penalty method for nonparametric estimation of the intensity function of a counting process. Ann. Inst. Statist. Math. 41: 781–807
- 3.
Antoniadis A., Besbeas P. and Sapatinas T. (2001). Wavelet shrinkage for natural exponential families with cubic variance functions. Sankhya 63: 309–327
- 4.
Antoniadis A. and Sapatinas T. (2001). Wavelet shrinkage for natural exponential families with quadratic variance functions. Biometrika 88: 805–820
- 5.
Barron A.R., Birgé L. and Massart P. (1999). Risk bounds for model selection via penalization. Probab. Theory Relat. Fields 113: 301–415
- 6.
Barron A.R. and Cover T.M. (1991). Minimum complexity density estimation. IEEE Trans. Inf. Theory 37: 1034–1054
- 7.
Birgé L. (1983). Approximation dans les espaces métriques et théorie de l’estimation. Z. Wahrscheinlichkeitstheorie Verw. Geb. 65: 181–237
- 8.
Birgé L. (1986). On estimating a density using Hellinger distance and some other strange facts. Probab. Theory Relat. Fields 71: 271–291
- 9.
Birgé L. (2006). Model selection via testing : an alternative to (penalized) maximum likelihood estimators. Ann. Inst. Henri Poincaré Probab. Statist. 42: 273–325
- 10.
Birgé, L.: Model selection for Poisson processes, in Asymptotics: particles, processes and inverse problems, Festschrift for Piet Groeneboom. Cator, E., Jongbloed, G., Kraaikamp, C., Lopuhaä, R., Wellner, J. (eds.) IMS Lecture Notes—Monograph Series, vol. 55 (2007)
- 11.
Birgé L. and Massart P. (1998). Minimum contrast estimators on sieves: exponential bounds and rates of convergence. Bernoulli 4: 329–375
- 12.
Birgé L. and Massart P. (2001). Gaussian model selection. J. Eur. Math. Soc. 3: 203–268
- 13.
Birgé L. and Rozenholc Y. (2006). How many bins should be put in a regular histogram. ESAIM-Probab. Statist. 10: 24–45
- 14.
Breiman L., Friedman J.H., Olshen R.A. and Stone C.J. (1984). Classification and Regression Trees. Wadsworth, Belmont
- 15.
Brown L.D. and Low M.G. (1996). Asymptotic equivalence of nonparametric regression and white noise. Ann. Statist. 24: 2384–2398
- 16.
Brown L.D., Carter A.V., Low M.G. and Zhang C.-H. (2004). Equivalence theory for density estimation, Poisson processes, and Gaussian white noise with drift. Ann. Statist. 32: 2074–2097
- 17.
Castellan, G.: Modified Akaike’s criterion for histogram density estimation. Technical Report 99.61. Université Paris-Sud, Orsay (1999)
- 18.
Castellan G. (2000). Sélection d’histogrammes à l’aide d’un critère de type Akaike. C.R.A.S. 330: 729–732
- 19.
DeVore R.A. (1998). Nonlinear approximation. Acta Numer. 7: 51–150
- 20.
DeVore R.A. and Lorentz G.G. (1993). Constructive Approximation. Springer, Berlin
- 21.
DeVore R.A. and Yu X.M. (1990). Degree of adaptive approximation. Math. Comp. 55: 625–635
- 22.
Donoho, D.L., Liu, R.C.: Geometrizing rates of convergence I. Technical report 137. Department of Statistics, University of California, Berkeley (1987)
- 23.
Donoho D.L. and Liu R.C. (1991). Geometrizing rates of convergence II. Ann. Statist. 19: 633–667
- 24.
Donoho D.L. and Liu R.C. (1991). Geometrizing rates of convergence III. Ann. Statist. 19: 668–701
- 25.
Gey S. and Nédélec E. (2005). Model selection for CART regression trees. IEEE Trans. Inf. Theory 51: 658–670
- 26.
Grégoire G. and Nembé J. (2000). Convergence rates for the minimum complexity estimator of counting process intensities. J. Nonparametr. Statist. 12: 611–643
- 27.
Kerkyacharian G. and Picard D. (2000). Thresholding algorithms, maxisets and well-concentrated bases. Test 9: 283–344
- 28.
Kolaczyk E. (1999). Wavelet shrinkage estimation of certain Poisson intensity signals using corrected threshold. Stat. Sin. 9: 119–135
- 29.
Kolaczyk E. and Nowak R. (2004). Multiscale likelihood analysis and complexity penalized estimation. Ann. Statist. 32: 500–527
- 30.
Laurent B. and Massart P. (2000). Adaptive estimation of a quadratic functional by model selection. Ann. Statist. 28: 1302–1338
- 31.
Le Cam, L.M.: Limits of experiments. In: Proceedings of 6th Berkeley Symposium on Math. Stat. and Prob. I, 245–261 (1972)
- 32.
Le Cam L.M. (1973). Convergence of estimates under dimensionality restrictions. Ann. Statist. 1: 38–53
- 33.
Le Cam L.M. (1986). Asymptotic methods in statistical decision theory. Springer, New York
- 34.
Lepskii O.V. (1991). Asymptotically minimax adaptive estimation I: Upper bounds. Optimally adaptive estimates. Theory Probab. Appl. 36: 682–697
- 35.
Massart P. (2000). Some applications of concentration inequalities to Statistics. Ann. Fac. Sci. Toulouse IX: 245–303
- 36.
Nussbaum M. (1996). Asymptotic equivalence of density estimation and Gaussian white noise. Ann. Statist. 24: 2399–2430
- 37.
Patil P.N. and Wood A.T. (2004). A counting process intensity estimation by orthogonal wavelet methods. Bernoulli 10: 1–24
- 38.
Reynaud-Bouret P. (2003). Adaptive estimation of the intensity of inhomogeneous Poisson processes via concentration inequalities. Probab. Theory Relat. Fields 126: 103–153
- 39.
Reynaud-Bouret P. (2006). Penalized projection estimators of the Aalen multiplicative intensity. Bernoulli 12: 633–661
- 40.
Stanley R.P. (1999). Enumerative Combinatorics, Vol. 2. Cambridge University Press, Cambridge
- 41.
van de Geer S. (1995). Exponential inequalities for martingales, with application to maximum likelihood estimation for counting processes. Ann. Statist. 23: 1779–1801
- 42.
Wu S.S. and Wells M.T. (2003). Nonparametric estimation of hazard functions by wavelet methods. J. Nonparametr. Statist. 15: 187–203
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Baraud, Y., Birgé, L. Estimating the intensity of a random measure by histogram type estimators. Probab. Theory Relat. Fields 143, 239–284 (2009). https://doi.org/10.1007/s00440-007-0126-6
Received:
Revised:
Published:
Issue Date:
Keywords
- Model selection
- Histogram
- Discrete data
- Poisson process
- Intensity estimation
- Adaptive estimation
Mathematics Subject Classification (2000)
- 62G05