Probability Theory and Related Fields

, Volume 142, Issue 3–4, pp 339–366 | Cite as

Reduction principles for quantile and Bahadur–Kiefer processes of long-range dependent linear sequences



In this paper we consider quantile and Bahadur–Kiefer processes for long range dependent linear sequences. These processes, unlike in previous studies, are considered on the whole interval (0, 1). As it is well-known, quantile processes can have very erratic behavior on the tails. We overcome this problem by considering these processes with appropriate weight functions. In this way we conclude strong approximations that yield some remarkable phenomena that are not shared with i.i.d. sequences, including weak convergence of the Bahadur–Kiefer processes, a different pointwise behavior of the general and uniform Bahadur–Kiefer processes, and a somewhat “strange” behavior of the general quantile process.


Long range dependence Linear processes Bahadur–Kiefer process Quantile processes Strong approximation 

Mathematics Subject Classification (2000)

60F15 60F17 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bahadur R.R. (1966). A note on quantiles in large samples. Ann. Math. Stat. 37: 577–580 MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Csörgő, M.: Quantile Processes with Statistical Applications. CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia (1983)Google Scholar
  3. 3.
    Csörgő, M., Csörgő, S., Horváth, L., Révész, P.: On weak and strong approximations of the quantile process. In: Proceedings of the seventh conference on probability theory (Braşov, 1982), pp. 81–95. VNU Science Press, Utrecht (1985)Google Scholar
  4. 4.
    Csörgő, S., Haeusler, E., Mason, D.M.: The quantile-transform–empirical-process approach to limit theorems for sums of order statistics. In: Sums, trimmed sums and extremes, Vol. 23, pp. 215–267. Progr. Probab. Birkhäuser, Boston (1991)Google Scholar
  5. 5.
    Csörgő M. and Horváth L. (1993). Weighted Approximations in Probability and Statistics. Wiley, Chichester Google Scholar
  6. 6.
    Csörgő, M., Kulik, R.: Weak convergence of Vervaat and Vervaat Error processes of long-range dependent Gaussian sequences (2006) (Preprint)Google Scholar
  7. 7.
    Csörgő M. and Révész P. (1978). Strong approximation of the quantile process. Ann. Stat. 6: 882–894 MATHCrossRefGoogle Scholar
  8. 8.
    Csörgő M. and Révész P. (1981). Strong Approximation in Probability and Statistics. Academic, New York Google Scholar
  9. 9.
    Csörgő M. and Szyszkowicz B. (1998). Sequential quantile and Bahadur–Kiefer processes. In: Balakrishnan, N. and Rao, C.R. (eds) Handbook of Statist, 16, pp 631–688. North-Holland, Amsterdam Google Scholar
  10. 10.
    Csörgő M., Szyszkowicz B. and Wang L. (2006). Strong invariance principles for sequential Bahadur–Kiefer and Vervaat Error processes of long-range dependent sequences. Ann. Stat. 34: 1016–1044 Google Scholar
  11. 11.
    Csörgő, M., Zitikis, R.: On the general Bahadur–Kiefer, quantile, and Vervaat processes: old and new. In: Limit theorems in probability and statistics, Vol. I (Balatonlelle, 1999), pp. 389–426, János Bolyai Math. Society, Budapest (2002)Google Scholar
  12. 12.
    Giraitis L. and Surgailis D. (1999). Central limit theorem for the empirical process of a linear sequence with long memory. J. Stat. Plann. Inference 80: 81–93 MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Giraitis, L., Surgailis, D.: The Reduction Principle for the Empirical Process of a Long Memory Linear Process. Empirical Process Techniques for Dependent Data, pp. 241–255. Birkhäuser Boston, Boston (2002)Google Scholar
  14. 14.
    Ho H.-C. and Hsing T. (1996). On the asymptotic expansion of the empirical process of long-memory moving averages. Ann. Stat. 24: 992–1024 MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Kiefer J. (1967). On Bahadur’s representation of sample qunatiles. Ann. Math. Stat. 38: 1323–1342 MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Kiefer J. (1970). Deviatios between the sample qunatile process and the sample df. In: Puri, M.L. (eds) Nonparametric Techniques in Statistical Inference, pp 349–357. Cambridge University Press, Cambridge Google Scholar
  17. 17.
    Koul, H.L., Surgailis, D.: Asymptotic expansion of the empirical process of long memory moving averages. In: Empirical Process Techniques for Dependent Data, pp. 213–239. Birkhäuser Boston (2002)Google Scholar
  18. 18.
    Kulik, R.: Sums of extreme values of subordinated long-range dependent sequences: moving averages with finite variance (2006) (Preprint)Google Scholar
  19. 19.
    Kulik, R., Ould Haye, M.: Trimmed sums of long-range dependent moving averages (2006) (Preprint)Google Scholar
  20. 20.
    Parzen E. (1979). Nonparametric statistical data modeling. J. Am. Stat. Assoc. 74: 105–131 MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Surgailis D. (2002). Stable limits of empirical processes of moving averages with infinite variance. Stoch. Process. Appl. 100: 255–274 MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Surgailis D. (2004). Stable limits of sums of bounded functions of long-memory moving averages with finite variance. Bernoulli 10: 327–355 MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Wang Q., Lin Y.-X. and Gulati C.M. (2003). Strong approximation for long memory processes with applications. J. Theor. Probab. 16: 377–389 MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Wu W.B. (2003). Empirical processes of long-memory sequences. Bernoulli 9: 809–831 MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Wu W.B. (2005). On the Bahadur representation of sample quantiles for dependent sequences. Ann. Stat. 4: 1934–1963 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsCarleton UniversityOttawaCanada
  2. 2.School of Mathematics and StatisticsUniversity of SydneySydneyAustralia
  3. 3.Mathematical InstituteWrocław UniversityWrocławPoland

Personalised recommendations