Probability Theory and Related Fields

, Volume 141, Issue 3–4, pp 625–645 | Cite as

On the speed of a cookie random walk

Article

Abstract

We consider the model of the one-dimensional cookie random walk when the initial cookie distribution is spatially uniform and the number of cookies per site is finite. We give a criterion to decide whether the limiting speed of the walk is non-zero. In particular, we show that a positive speed may be obtained for just three cookies per site. We also prove a result on the continuity of the speed with respect to the initial cookie distribution.

Keywords

Law of large numbers Cookie or multi-excited random walk Branching process with migration 

Mathematics Subject Classification (2000)

60K35 60J80 60F15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antal T. and Redner S. (2005). The excited random walk in one dimension. J. Phys. A 38(12): 2555–2577 MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Basdevant, A.-L., Singh, A.: Rate of growth of a transient cookie random walk, 2007. Preprint. Available via http://arxiv.org/abs/math.PR/0703275Google Scholar
  3. 3.
    Benjamini I. and Wilson D.B. (2003). Excited random walk. Electron. Commun. Probab. 8: 86–92 MATHMathSciNetGoogle Scholar
  4. 4.
    Davis B. (1999). Brownian motion and random walk perturbed at extrema. Probab. Theory Relat. Fields 113(4): 501–518 MATHCrossRefGoogle Scholar
  5. 5.
    Feller W. (1971). An introduction to probability theory and its applications, vol. II. Wiley, New York MATHGoogle Scholar
  6. 6.
    Kesten H., Kozlov M.V. and Spitzer F. (1975). A limit law for random walk in a random environment. Compositio Math. 30: 145–168 MATHMathSciNetGoogle Scholar
  7. 7.
    Kozma, G.: Excited random walk in three dimensions has positive speed, 2003. Preprint. Available via http://arxiv.org/abs/math.PR/0310305Google Scholar
  8. 8.
    Kozma, G.: Excited random walk in two dimensions has linear speed, 2005. Preprint. Available via http://arxiv.org/abs/math.PR/0512535Google Scholar
  9. 9.
    Mountford T., Pimentel L.P.R. and Valle G. (2006). On the speed of the one-dimensional excited random walk in the transient regime. Alea 2: 279–296, (electronic)MATHMathSciNetGoogle Scholar
  10. 10.
    Norris J.R. (1998). Markov chains. Cambridge Series in Statistical and Probabilistic Mathematics, vol. 2. Cambridge University Press, Cambridge, Reprint of 1997 originalGoogle Scholar
  11. 11.
    Vatutin V.A. and Zubkov A.M. (1993). Branching processes. II. J. Soviet Math. 67(6): 3407–3485, Probability theory and mathematical statistics, 1MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Vinokurov. G.V.: On a critical Galton–Watson branching process with emigration. Teor. Veroyatnost. i Primenen. (English translation: Theory Probab. Appl. 32(2), 351–352 (1987)), 32(2), 378–382 (1987)Google Scholar
  13. 13.
    Zerner M.P.W. (2005). Multi-excited random walks on integers. Probab. Theory Relat. Fields 133(1): 98–122 MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Zerner M.P.W. (2006). Recurrence and transience of excited random walks on \(\mathbb{Z}^d\) and strips Electron. Commun. Probab. 11: 118–128, (electronic)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Laboratoire de Probabilités et Modèles AléatoiresUniversité Pierre et Marie Curie, University Paris VIParisFrance

Personalised recommendations