Probability Theory and Related Fields

, Volume 136, Issue 4, pp 524–540 | Cite as

Enlargements of filtrations and path decompositions at non stopping times

  • Ashkan NikeghbaliEmail author


Azéma associated with an honest time L the supermartingale Open image in new window and established some of its important properties. This supermartingale plays a central role in the general theory of stochastic processes and in particular in the theory of progressive enlargements of filtrations. In this paper, we shall give an additive characterization for these supermartingales, which in turn will naturally provide many examples of enlargements of filtrations. We combine this characterization with some arguments from both initial and progressive enlargements of filtrations to establish some path decomposition results, closely related to or reminiscent of Williams' path decomposition results. In particular, some of the fragments of the paths in our decompositions end or start with a new family of random times which are not stopping times, nor honest times.

Mathematics Subject Classification (2000)

05C38 15A15 05A15 15A18 

Key words or phrases

Progressive enlargements of filtrations Initial enlargements of filtrations Azéma's supermartingale General theory of stochastic processes Path decompositions Pseudo-stopping times 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Azéma, J.: Quelques applications de la th éorie générale des processus I. Invent. Math. 18, 293–336 (1972)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Azéma, J., Meyer, P.A., Yor, M.: Martingales relatives. Sém.Proba. XXVI, Lecture Notes in Mathematics 1526, 307–321 (1992)zbMATHGoogle Scholar
  3. 3.
    Azéma, J., Yor, M.: Sur les zéros des martingales continues. Sém.Proba. XXVI, Lecture Notes in Mathematics 1526, 248–306 (1992)zbMATHGoogle Scholar
  4. 4.
    Barlow, M.T.: Study of a filtration expanded to include an honest time. ZW 44, 307–324 (1978)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Dellacherie, C., Maisonneuve, B., Meyer, P.A.: Probabilités et potentiel, Chapitres XVII-XXIV: Processus de Markov (fin), Compléments de calcul stochastique, Hermann (1992)Google Scholar
  6. 6.
    Elliott, R.J., Jeanblanc, M., Yor, M.: On models of default risk. Math. Finance 10, 179–196 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Jeulin, T.: Semi-martingales et grossissements d'une filtration. Lecture Notes in Mathematics 833, Springer, 1980Google Scholar
  8. 8.
    Jeulin, T., Yor, M.: Grossissement d'une filtration et semimartingales: formules explicites. Sém.Proba. XII, Lecture Notes in Mathematics 649, 78–97 (1978)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Jeulin, T., Yor, M. (eds): Grossissements de filtrations: exemples et applications, Lecture Notes in Mathematics 1118, Springer, 1985Google Scholar
  10. 10.
    Mansuy, R., Yor, M.: Random times and enlargement of filtrations in a Brownian setting, to be published in Lecture Notes in Mathematics, Springer, 2005Google Scholar
  11. 11.
    Millar, P.W.: Random times and decomposition theorems. Proc. Symp. Pure Math. 31, 91–103 (1977)MathSciNetGoogle Scholar
  12. 12.
    Millar, P.W.: A path decomposition for Markov processes. Ann. prob. 6, 345–348 (1978)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Nikeghbali, A.: A remarkable class of submartingales (I), preprint, on ArXivGoogle Scholar
  14. 14.
    Nikeghbali, A.: Some random times and martingales associated with BES 0(δ) processes (0 < δ < 2), to appear in ALEAGoogle Scholar
  15. 15.
    Nikeghbali, A., Yor, M.: A definition and some characteristic properties of pseudo-stopping times. Ann. Prob. 33, 1804–1824 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Nikeghbali, A., Yor, M.: Doob's maximal identity, multiplicative decompositions and enlargements of filtrations, to appear in Illinois Journal of MathematicsGoogle Scholar
  17. 17.
    Nikeghbali, A.: How badly are the Burholder-Davis-Gundy inequalities affected by arbitrary random times?, preprint, on ArXivGoogle Scholar
  18. 18.
    Pitman, J.W., Yor, M.: Bessel processes and infinitely divisible laws. In: Williams, D. (ed), Stochastic integrals, Lecture Notes in Mathematics 851, Springer, 1981Google Scholar
  19. 19.
    Protter, P.E.: Stochastic integration and differential equations, Springer. Second edition 2005Google Scholar
  20. 20.
    Revuz, D., Yor, M.: Continuous martingales and Brownian motion, Springer. Third edition 1999Google Scholar
  21. 21.
    Rogers, C., Williams, D.: Diffusions, Markov processes and Martingales, vol 2: Ito calculus, Wiley and Sons, New York, 1987Google Scholar
  22. 22.
    Williams, D.: Path decomposition and continuity of local time for one-dimensional diffusions I. Proc. London Math. Soc. 3 (28), 3–28 (1974)Google Scholar
  23. 23.
    Williams, D.: A non stopping time with the optional-stopping property. Bull. London Math. Soc. 34, 610–612 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Yor, M.: Les inégalités de sous-martingales comme conséquence de la relation de domination. Stochastics 3 (1), 1–15 (1979)MathSciNetGoogle Scholar
  25. 25.
    Yor, M.: Grossissement d'une filtration et semi-martingales: théorèmes généraux, Sém. Proba. XII, Lecture Notes in Mathematics 649, 1978Google Scholar
  26. 26.
    Yor, M.: Some aspects of Brownian motion, Part II. Some recent martingale problems. Birkhäuser, Basel, 1997Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.American Institute of MathematicsUniversity of RochesterUSA

Personalised recommendations