Probability Theory and Related Fields

, Volume 136, Issue 4, pp 619–660

Cugliandolo-Kurchan equations for dynamics of Spin-Glasses

Article

DOI: 10.1007/s00440-005-0491-y

Cite this article as:
Ben Arous, G., Dembo, A. & Guionnet, A. Probab. Theory Relat. Fields (2006) 136: 619. doi:10.1007/s00440-005-0491-y
  • 113 Downloads

Abstract

We study the Langevin dynamics for the family of spherical p-spin disordered mean-field models of statistical physics. We prove that in the limit of system size N approaching infinity, the empirical state correlation and integrated response functions for these N-dimensional coupled diffusions converge almost surely and uniformly in time, to the non-random unique strong solution of a pair of explicit non-linear integro-differential equations intensively studied by Cugliandolo and Kurchan.

Mathematics Subject Classification

Primary: 82C44 Secondary: 82C31 60H10 60F15 60K35 

Key words or phrases

Interacting random processes Disordered systems Statistical mechanics Langevin dynamics Aging p-spin models 

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Gérard Ben Arous
    • 1
    • 2
  • Amir Dembo
    • 3
  • Alice Guionnet
    • 4
  1. 1.Courant Institute of Mathematical SciencesNew YorkUSA
  2. 2.EPFLLausanneSwitzerland
  3. 3.Department of Statistics and Department of MathematicsStanford UniversityStanfordUSA
  4. 4.UMPA, Ecole Normale Superieure de Lyon 46 allée d'ItalieLyon Cedex 07France

Personalised recommendations