Probability Theory and Related Fields

, Volume 136, Issue 2, pp 263–297 | Cite as

Gaussian fluctuations of characters of symmetric groups and of Young diagrams

  • Piotr ŚniadyEmail author


We study asymptotics of reducible representations of the symmetric groups S q for large q. We decompose such a representation as a sum of irreducible components (or, alternatively, Young diagrams) and we ask what is the character of a randomly chosen component (or, what is the shape of a randomly chosen Young diagram). Our main result is that for a large class of representations the fluctuations of characters (and fluctuations of the shape of the Young diagrams) are asymptotically Gaussian; in this way we generalize Kerov's central limit theorem. The considered class consists of representations for which the characters almost factorize and this class includes, for example, the left-regular representation (Plancherel measure), irreducible representations and tensor representations. This class is also closed under induction, restriction, outer product and tensor product of representations. Our main tool in the proof is the method of genus expansion, well known from the random matrix theory.


Conjugacy Class Symmetric Group Young Diagram Random Matrix Theory Disjoint Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Biane, P.: Representations of symmetric groups and free probability. Adv. Math. 138 (1), 126–181 (1998)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Biane, P.: Approximate factorization and concentration for characters of symmetric groups. Internat. Math. Res. Notices (4), 179–192 (2001)Google Scholar
  3. 3.
    Biane, P.: Characters of symmetric groups and free cumulants. In: Vershik, A.M. (ed.) Asymptotic combinatorics with applications to mathematical physics, volume 1815 of Lecture Notes in Mathematics. Springer, 2003, pp 185–200Google Scholar
  4. 4.
    Brillinger, D.: The calculation of cumulants via conditioning. Ann. Inst. Statist. Math. 21, 375–390 (1969)MathSciNetGoogle Scholar
  5. 5.
    Collins, B., Mingo, J.A., Śniady, P., Speicher, R.: Second order freeness and fluctuations of random matrices: III. Higher order freeness and free cumulants. In preparation, 2005Google Scholar
  6. 6.
    Collins, B.: Moments and cumulants of polynomial random variables on unitary groups, the Itzykson-Zuber integral, and free probability. Int. Math. Res. Not. (17), 953–982 (2003)Google Scholar
  7. 7.
    Hald, A.: The early history of the cumulants and the Gram-Charlier series. Internat. Statist. Rev. 68, 137–157 (2000)zbMATHGoogle Scholar
  8. 8.
    Hora, A.: Noncommutative aspect of central limit theorem for the irreducible characters of the symmetric groups. In: Non-commutativity, infinite-dimensionality and probability at the crossroads, volume 16 of QP–PQ: Quantum Probab. White Noise Anal.. World Sci. Publishing, River Edge, NJ, 2002, pp 318–328Google Scholar
  9. 9.
    Hora, A.: A noncommutative version of Kerov's Gaussian limit for the Plancherel measure of the symmetric group. In: Asymptotic combinatorics with applications to mathematical physics (St. Petersburg, 2001), volume 1815 of Lecture Notes in Math. Springer, Berlin, 2003, pp 77–88Google Scholar
  10. 10.
    Ivanov, V., Kerov, S.: The algebra of conjugacy classes in symmetric groups, and partial permutations. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 256 (Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 3), 95–120, 265, (1999)Google Scholar
  11. 11.
    Ivanov, V., Olshanski, G.: Kerov's central limit theorem for the Plancherel measure on Young diagrams. In: Fomin, S. (ed) Symmetric functions 2001: surveys of developments and perspectives, volume 74 of NATO Science Series II. Mathematics, Physics and Chemistry. Kluwer, 2002, pp 93–151Google Scholar
  12. 12.
    Kerov, S.V.: Transition probabilities of continual Young diagrams and the Markov moment problem. Funktsional. Anal. i Prilozhen. 27(2), 32–49, 96, 1993MathSciNetGoogle Scholar
  13. 13.
    Kerov, S.: Gaussian limit for the Plancherel measure of the symmetric group. C. R. Acad. Sci. Paris Sér. I Math. 316 (4), 303–308 (1993)MathSciNetGoogle Scholar
  14. 14.
    Kerov, S.: Interlacing measures. In: Kirillov's seminar on representation theory, volume 181 of Amer. Math. Soc. Transl. Ser. 2. Amer. Math. Soc., Providence, RI, 1998, pp 35–83Google Scholar
  15. 15.
    Kerov, S.: A differential model for the growth of Young diagrams. In: Proceedings of the St. Petersburg Mathematical Society, Vol. IV, volume 188 of Amer. Math. Soc. Transl. Ser. 2. Providence, RI, 1999. Amer. Math. Soc., pp 111–130Google Scholar
  16. 16.
    Kerov, S., Olshanski, G.: Polynomial functions on the set of Young diagrams. C. R. Acad. Sci. Paris Sér. I Math. 319 (2), 121–126 (1994)MathSciNetGoogle Scholar
  17. 17.
    Kreweras, G.: Sur les partitions non croisées d'un cycle. Discrete Math. 1 (4), 333–350 (1972)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Lehner, F.: Cumulants in noncommutative probability theory. I. Noncommutative exchangeability systems. Math. Z. 248 (1), 67–100 (2004)MathSciNetGoogle Scholar
  19. 19.
    Lehner, F.: Cumulants in noncommutative probability theory IV. de finetti's theorem, L p-inequalities and Brillinger's formula. 2004. Preprint arXiv:math.OA/0409025Google Scholar
  20. 20.
    Leonov, V.P., Sirjaev, A.N.: On a method of semi-invariants. Theor. Probability Appl. 4, 319–329 (1959)zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Logan, B.F., Shepp, L.A.: A variational problem for random Young tableaux. Advances in Math. 26 (2), 206–222 (1977)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Mattner, L.: What are cumulants? Doc. Math. 4, 601–622 (electronic), (1999)zbMATHMathSciNetGoogle Scholar
  23. 23.
    Mingo, J.A., Speicher, R.: Second order freeness and fluctuations of random matrices: I. Gaussian and Wishart matrices and cyclic Fock spaces. Preprint arXiv:math.OA/0405191, 2004Google Scholar
  24. 24.
    Mingo, J.A., Śniady, P., Speicher, R.: Second order freeness and fluctuations of random matrices: II. Unitary random matrices. Preprint arxiv:math.OA/0405258, 2004Google Scholar
  25. 25.
    Okounkov, A.: Random matrices and random permutations. Internat. Math. Res. Notices (20), 1043–1095 (2000)Google Scholar
  26. 26.
    Okounkov, A., Vershik, A.M.: A new approach to the representation theory of symmetric groups. Selecta Math. (N.S.) 4, 581–605 (1996)zbMATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Pittel, B., Romik, D.: Limit shapes for random square Young tableaux and plane partitions. Preprint arXiv:math.PR/0405190, 2004Google Scholar
  28. 28.
    Śniady, P.: Asymptotics of characters of symmetric groups, genus expansion and free probability. Preprint arXiv:math.CO/041164, 2004Google Scholar
  29. 29.
    Speicher, R.: Free probability theory and non-crossing partitions. Sém. Lothar. Combin. 39, Art. B39c, 38 pp. (electronic) (1997)Google Scholar
  30. 30.
    Voiculescu, D.V., Dykema, K.J., Nica, A.: Free random variables. American Mathematical Society, Providence, RI, 1992Google Scholar
  31. 31.
    Veršik, A.M., Kerov, S.V.: Asymptotic behavior of the Plancherel measure of the symmetric group and the limit form of Young tableaux. Dokl. Akad. Nauk SSSR, 233 (6), 1024–1027 (1977)Google Scholar
  32. 32.
    Voiculescu, D.: Addition of certain noncommuting random variables. J. Funct. Anal. 66 (3), 323–346 (1986)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Zvonkin, A.: Matrix integrals and map enumeration: an accessible introduction. Math. Comput. Modelling 26 (8–10), 281–304 1997; Combinatorics and physics (Marseilles, 1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Institute of MathematicsUniversity of WroclawWroclawPoland

Personalised recommendations