Probability Theory and Related Fields

, Volume 135, Issue 2, pp 201–215 | Cite as

Inversion de l'espace et du temps des processus de Lévy stables

  • S. FouratiEmail author


We proove a new duality relation between stable Lévy processes with index Open image in new window and those with index Open image in new window . This duality appears to be the trajectorial version of the duality of Zolotarev which concerns one dimensional stable laws. We give an application of this result to the behaviour of the paths at small and large times of the process ``conditioned to stay positive''.

Mathematics Subject Classification

60G50 60G51 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bertoin, J.: Sur la décomposition de la trajectoire d'un processus de Lévy spectralement positif en son infimum. Ann. Inst. Henri Poincaré 27, 537–547 (1991)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Bertoin, J.: Splitting at the infimum and excursions in half-lines for random walks and Lévy processes. Stochastic Process. Appl. 47, 17–35 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Bertoin, J.: Increase times of stable processes. J. Theoretic. Prob. (1995)Google Scholar
  4. 4.
    Bertoin, J.: Lévy processes. Cambridge University Press, 1996Google Scholar
  5. 5.
    Bingham, N.H.: Maxima of sums of random variables and suprema of stable processes, Zeit. Wahrsch. verw. Gebiete 26, 273–296 (1973)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular variation. Cambridge University Press, 1987Google Scholar
  7. 7.
    Darling, D.A.: The maximum of sums of stable random variables. Trans. Amer. Math. Soc. 83, 164–169 (1956)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Doney, R.A.: On Wiener-Hopf factorisation and distribution of extrema for certain stable processes. Ann. Prob. 15, 1352–1362 (1987)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Fourati, S.: Points de croissance des processus de Lévy et théorie générale des processus. Probab. Theory and Related Fields 110, 13–49 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Heyde, C.C.: On the maximum of sums of random variables and the supremum functional for stable processes. J. Appl. Prob. 6, 419–429 (1969)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Monrad, D., Sylverstein, M.L.: Stable Processes : Sample Function Growth at a Local Minimum. Z. Wahrscheinlichkeitstheorie verw. Gebiete 49, 177–210 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Sato, K.I.: Lévy processes and infinitely divisible distributions. Cambridge University Press, 1999Google Scholar
  13. 13.
    Zolotarev, V.M.: One-dimensional stable distributions. Amer. Mah. Soc. Providence, R.I. (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Laboratoire de Probabilité et Modèles AléatoiresParis
  2. 2.CEDEX 05 et Laboratoire de Mathématique de L'INSAMont Saint AignanFrance

Personalised recommendations