Probability Theory and Related Fields

, Volume 133, Issue 1, pp 1–17

Weak convergence of random p-mappings and the exploration process of inhomogeneous continuum random trees

Article

Abstract

We study the asymptotics of the p-mapping model of random mappings on [n] as n gets large, under a large class of asymptotic regimes for the underlying distribution p. We encode these random mappings in random walks which are shown to converge to a functional of the exploration process of inhomogeneous random trees, this exploration process being derived (Aldous-Miermont-Pitman 2004) from a bridge with exchangeable increments. Our setting generalizes previous results by allowing a finite number of “attracting points” to emerge.

Mathematics Subject Classification (2000)

60C05 60F17 

Key words or phrases

Random mapping Weak convergence Inhomogeneous continuum random tree 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aldous, D.J., Miermont, G., Pitman, J.: Brownian bridge asymptotics for random p-mappings. Electron. J. Probab. 9, pp. 37–56 (2004) http://www.math.washington.edu/˜ejpecp
  2. 2.
    Aldous, D.J., Miermont, G., Pitman, J.: The exploration process of inhomogeneous continuum random trees, and an extension of Jeulin’s local time identity. Probab. Theory Relat. Fields 129, 182–218 (2004)CrossRefGoogle Scholar
  3. 3.
    Aldous, D.J., Pitman, J.: Brownian bridge asymptotics for random mappings. Random Structures Algorithms 5, 487–512 (1994)Google Scholar
  4. 4.
    Aldous, D.J., Pitman, J.: Inhomogeneous continuum random trees and the entrance boundary of the additive coalescent. Probab. Theory Relat. Fields 118, 455–482 (2000)Google Scholar
  5. 5.
    Aldous, D.J., Pitman, J.: Invariance principles for non-uniform random mappings and trees. in Asymptotic Combinatorics with Applications in Mathematical Physics, V. Malyshev, A. Vershik, (eds.), Kluwer Academic Publishers, 2002, pp. 113–147Google Scholar
  6. 6.
    Aldous, D.J., Pitman, J.: Two recursive decompositions of Brownian bridge related to the asymptotics of random mappings. Technical Report 595, Dept. Statistics, U.C. Berkeley, (2002). Available via http://www.stat.berkeley.edu
  7. 7.
    Camarri, M., Pitman, J.: Limit distributions and random trees derived from the birthday problem with unequal probabilities. Electron. J. Probab. 5 (1), 18 (electronic)Google Scholar
  8. 8.
    Joyal, A.: Une théorie combinatoire des séries formelles. Adv. in Math. 42, 1–82 (1981)CrossRefGoogle Scholar
  9. 9.
    O’Cinneide, C.A., Pokrovskii, A.V.: Nonuniform random transformations. Ann. Appl. Probab. 10, 1151–1181 (2000)Google Scholar
  10. 10.
    Pitman, J.: Random mappings, forests, and subsets associated with Abel-Cayley- Hurwitz multinomial expansions. Sém. Lothar. Combin. 46, (2001/02) Art. B46h, 45 pp. (electronic)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Department of StatisticsU.C. BerkeleyUSA
  2. 2.CNRSUniversité Paris-SudOrsayFrance
  3. 3.Department of StatisticsU.C. BerkeleyUSA

Personalised recommendations