Probability Theory and Related Fields

, Volume 130, Issue 4, pp 493–517 | Cite as

Central limit theorems for the large-spin asymptotics of quantum spins

Article

Abstract.

We use a generalized form of Dyson’s spin wave formalism to prove several central limit theorems for the large-spin asymptotics of quantum spins in a coherent state.

Keywords

Quantum central limit theorem Heisenberg model Large-spin limit Bosonization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, P.W.: Basic notions of condensed matter physics. The Benjamin/Cummings Publishing Company, Inc., 1984Google Scholar
  2. 2.
    Arecchi, F.T., Courtens, E., Gilmore, R., Thomas, H.: Atomic coherent states in quantum optics. Phys. Rev. A 6 (6), 2211–2237 (1972)CrossRefGoogle Scholar
  3. 3.
    Caputo, P., Martinelli, F.: Relaxation time of anisoytropic simple exclusion and quantum Heisenberg models. Ann. Appl. Probab. 13, 691–721 (2003) arXiv:math.PR/0202025CrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    Conlon, J., Solovej, J.P.: On asymptotic limits for the quantum Heisenberg model. J. Phys. A: Math. Gen. 23, 3199–3213 (1990)CrossRefMATHGoogle Scholar
  5. 5.
    Dyson, F.: General theory of spin-wave interactions. Phys. Rev. 102 (5), 1217–1230 (1956)CrossRefGoogle Scholar
  6. 6.
    Dyson, F.: Thermodynamic behavior of an ideal ferromagnet. Phys. Rev. 102 (5), 1230–1244 (1956)CrossRefGoogle Scholar
  7. 7.
    Goderis, D., Verbeure, A., Vets, P.: Non-commutative central limits. Prob. Th. Rel. Fields 82, 527–544 (1989)CrossRefMATHGoogle Scholar
  8. 8.
    Goderis, D., Verbeure, A., Vets, P.: Dynamics of fluctuations for quantum lattice systems. Comm. Math. Phys. 128, 533–549 (1990)MATHGoogle Scholar
  9. 9.
    Goderis, D., Verbeure, A., Vets, P.: About the exactness of the linear response theory. Comm. Math. Phys. 136, 265–283 (1991)MATHGoogle Scholar
  10. 10.
    Goderis, D., Vets, P.: Central limit theorem for mixing quantum systems and the CCR-algebra of fluctuations. Comm. Math. Phys. 122, 249 (1989)MATHGoogle Scholar
  11. 11.
    Johansson, K.: Discrete orthogonal polynomial ensembles and the Plancherel measure. Ann. Math. 153, 259–296 (2001) arXiv:math.CO/9906120MathSciNetMATHGoogle Scholar
  12. 12.
    Koma, T., Nachtergaele, B., Starr, S.: The spectral gap for the ferromagnetic spin-J XXZ chain. Adv. Theor. Math. Phys. 5, 1047–1090 (2001) arXiv:math.MP/0110017MATHGoogle Scholar
  13. 13.
    Kuperberg, G.: Random words, quantum statistics, central limits, random matrices. Meth. Appl. Anal. 9, 101–119 (2002) arXiv:math.PR/9909104Google Scholar
  14. 14.
    Kuperberg, G.: A tracial quantum central limit theorem. 2002 arXiv:math-ph/0202035Google Scholar
  15. 15.
    Lieb, E.H.: The classical limit of quantum spin systems. Comm. Math. Phys. 31, 327–340 (1973)Google Scholar
  16. 16.
    Michoel, T., Verbeure, A.: Mathematical structure of magnons in quantum ferromagnets. J. Phys. A: Math. Gen. 32, 5875–5883 (1999) arXiv:math-ph/9903004CrossRefMATHGoogle Scholar
  17. 17.
    Michoel, T., Verbeure, A.: Goldstone boson normal coordinates. Comm. Math. Phys. 216, 461–490 (2001) arXiv:math-ph/0001033CrossRefMATHGoogle Scholar
  18. 18.
    Michoel, T., Nachtergaele, B.: The large-spin asymptotics of the ferromagnetic XXZ chain. Markov Proc. Rel. Fields. To appear 2003 arXiv:math-ph/0307051Google Scholar
  19. 19.
    Nachtergaele, B., Spitzer, W., Starr, S.: On the dynamics of interfaces in the ferromagnetic Heisenberg XXZ chain under weak perturbations. Advances in Differential Equations and Mathematical Physics, Contempary Mathematics, 237, Karpeshina, Y, Stolz, G, Weikard, R, Zeng, Y, American Mathematical Society, 2003, pp. 251–270 arXiv:math-ph/0210017Google Scholar
  20. 20.
    Petz, D.: An invitation to the algebra of canonical commutation relations. Leuven Notes in Mathematical and Theoretical Physics, Vol. 2, series A: Mathematical Physics, Leuven University Press, 1990Google Scholar
  21. 21.
    Reed, M., Simon, B.: Methods of modern mathematical physics. Academic Press, 1972, pp. I–IVGoogle Scholar
  22. 22.
    van Hemmen, J.L., Brito, A.A.S., Wreszinski, W.F.: Spin waves in quantum ferromagnets. J. Stat. Phys. 37 (1/2), 187–213 (1984)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  1. 1.Instituut voor Theoretische FysicaKatholieke Universiteit LeuvenLeuvenBelgium
  2. 2.Department of MathematicsUniversity of CaliforniaDavisUSA

Personalised recommendations