MS/MS in silico subtraction-based proteomic profiling as an approach to facilitate disease gene discovery: application to lens development and cataract

  • Sandeep Aryal
  • Deepti Anand
  • Francisco G. Hernandez
  • Bailey A. T. Weatherbee
  • Hongzhan Huang
  • Ashok P. Reddy
  • Phillip A. Wilmarth
  • Larry L. David
  • Salil A. LachkeEmail author
Original Investigation


While the bioinformatics resource-tool iSyTE (integrated Systems Tool for Eye gene discovery) effectively identifies human cataract-associated genes, it is currently based on just transcriptome data, and thus, it is necessary to include protein-level information to gain greater confidence in gene prioritization. Here, we expand iSyTE through development of a novel proteome-based resource on the lens and demonstrate its utility in cataract gene discovery. We applied high-throughput tandem mass spectrometry (MS/MS) to generate a global protein expression profile of mouse lens at embryonic day (E)14.5, which identified 2371 lens-expressed proteins. A major challenge of high-throughput expression profiling is identification of high-priority candidates among the thousands of expressed proteins. To address this problem, we generated new MS/MS proteome data on mouse whole embryonic body (WB). WB proteome was then used as a reference dataset for performing “in silico WB-subtraction” comparative analysis with the lens proteome, which effectively identified 422 proteins with lens-enriched expression at ≥ 2.5 average spectral counts, ≥ 2.0 fold enrichment (FDR < 0.01) cut-off. These top 20% candidates represent a rich pool of high-priority proteins in the lens including known human cataract-linked genes and many new potential regulators of lens development and homeostasis. This rich information is made publicly accessible through iSyTE (, which enables user-friendly visualization of promising candidates, thus making iSyTE a comprehensive tool for cataract gene discovery.



The authors thank Drs. Melinda Duncan and Velia Fowler for helpful discussions. This work was supported by National Institutes of Health/National Eye Institute [R01 EY021505 to S.L.]. Support from the University of Delaware Core Imaging Facility and Proteomics and Mass Spectrometry Facility was made possible through the Institutional Development Award (IDeA) from the National Institutes of Health/National Institute of General Medical Sciences INBRE Program Grant [Grant Number P20 GM103446]. Acquisition of the confocal microscope used in this study was funded by the National Institutes of Health/National Center for Research Resources Grant [S10 RR027273]. Mass spectrometric analysis was performed by the OHSU Proteomics Shared Resource with partial support from NIH core Grants P30 EY010572 and P30 CA069533 and shared instrument Grant S10OD-012246. S.A. was supported by a Fight for Sight Summer Student Fellowship and Sigma Xi award.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

439_2019_2095_MOESM1_ESM.xlsx (6.5 mb)
Supplementary material 1 (XLSX 6667 kb)
439_2019_2095_MOESM2_ESM.xlsx (53 kb)
Supplementary material 2 (XLSX 52 kb)
439_2019_2095_MOESM3_ESM.xlsx (5.4 mb)
Supplementary material 3 (XLSX 5500 kb)
439_2019_2095_MOESM4_ESM.xlsx (89 kb)
Supplementary material 4 (XLSX 88 kb)
439_2019_2095_MOESM5_ESM.xlsx (2.5 mb)
Supplementary material 5 (XLSX 2569 kb)
439_2019_2095_MOESM6_ESM.xlsx (128 kb)
Supplementary material 6 (XLSX 127 kb)
439_2019_2095_MOESM7_ESM.xlsx (132 kb)
Supplementary material 7 (XLSX 131 kb)
439_2019_2095_MOESM8_ESM.xlsx (12 kb)
Supplementary material 8 (XLSX 12 kb)
439_2019_2095_MOESM9_ESM.xlsx (96 kb)
Supplementary material 9 (XLSX 95 kb)
439_2019_2095_MOESM10_ESM.xlsx (82 kb)
Supplementary material 10 (XLSX 81 kb)
439_2019_2095_MOESM11_ESM.xlsx (81 kb)
Supplementary material 11 (XLSX 80 kb)
439_2019_2095_MOESM12_ESM.xlsx (11.1 mb)
Supplementary material 12 (XLSX 11397 kb)


  1. Abu-Safieh L, Abboud EB, Alkuraya H et al (2011) Mutation of IGFBP7 causes upregulation of BRAF/MEK/ERK pathway and familial retinal arterial macroaneurysms. Am J Hum Genet 89:313–319. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Agrawal SA, Anand D, Siddam AD et al (2015) Compound mouse mutants of bZIP transcription factors Mafg and Mafk reveal a regulatory network of non-crystallin genes associated with cataract. Hum Genet 134:717–735. CrossRefPubMedPubMedCentralGoogle Scholar
  3. AlFadhli S, Abdelmoaty S, Al-Hajeri A et al (2012) Novel crystallin gamma B mutations in a Kuwaiti family with autosomal dominant congenital cataracts reveal genetic and clinical heterogeneity. Mol Vis 18:2931–2936PubMedPubMedCentralGoogle Scholar
  4. Anand D, Lachke SA (2017) Systems biology of lens development: a paradigm for disease gene discovery in the eye. Exp Eye Res 156:22–33. CrossRefPubMedGoogle Scholar
  5. Anand D, Kakrana A, Siddam AD et al (2018) RNA sequencing-based transcriptomic profiles of embryonic lens development for cataract gene discovery. Hum Genet 137:941–954. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Ang SJ, Stump RJW, Lovicu FJ, McAvoy JW (2004) Spatial and temporal expression of Wnt and Dickkopf genes during murine lens development. Gene Expr Patterns 4:289–295. CrossRefPubMedGoogle Scholar
  7. Arora AI, Johar K, Gajjar DU et al (2012) Cx43, ZO-1, alpha-catenin and beta-catenin in cataractous lens epithelial cells. J Biosci 37:979–987. CrossRefPubMedGoogle Scholar
  8. Audette DS, Anand D, So T et al (2016) Prox1 and fibroblast growth factor receptors form a novel regulatory loop controlling lens fiber differentiation and gene expression. Development 143:318–328. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bassnett S, Wilmarth PA, David LL (2009) The membrane proteome of the mouse lens fiber cell. Mol Vis 15:2448–2463PubMedPubMedCentralGoogle Scholar
  10. Beebe DC, Piatigorsky J (1981) Translational regulation of delta-crystallin synthesis during lens development in the chicken embryo. Dev Biol 84:96–101CrossRefGoogle Scholar
  11. Berry V, Francis P, Kaushal S et al (2000) Missense mutations in MIP underlie autosomal dominant “polymorphic” and lamellar cataracts linked to 12q. Nat Genet 25:15–17. CrossRefPubMedGoogle Scholar
  12. Berry V, Francis P, Reddy MA et al (2001) Alpha-B crystallin gene (CRYAB) mutation causes dominant congenital posterior polar cataract in humans. Am J Hum Genet 69:1141–1145. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bharathidevi SR, Babu KA, Jain N et al (2017) Ocular distribution of antioxidant enzyme paraoxonase & its alteration in cataractous lens & diabetic retina. Indian J Med Res 145:513–520. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Billingsley G, Santhiya ST, Paterson AD et al (2006) CRYBA4, a novel human cataract gene, is also involved in microphthalmia. Am J Hum Genet 79:702–709. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Burstedt MSI, Ristoff E, Larsson A, Wachtmeister L (2009) Rod-cone dystrophy with maculopathy in genetic glutathione synthetase deficiency: a morphologic and electrophysiologic study. Ophthalmology 116:324–331. CrossRefPubMedGoogle Scholar
  16. Castellini M, Wolf LV, Chauhan BK et al (2005) Palm is expressed in both developing and adult mouse lens and retina. BMC Ophthalmol 5:14. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Cavalheiro GR, Matos-Rodrigues GE, Zhao Y et al (2017) N-myc regulates growth and fiber cell differentiation in lens development. Dev Biol 429:105–117. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Cenedella RJ (1995) Role of transcription, translation, and protein turnover in controlling the distribution of 3-hydroxy-3-methylglutaryl coenzyme A reductase in the lens. Invest Ophthalmol Vis Sci 36:2133–2141PubMedGoogle Scholar
  19. Chambers MC, Maclean B, Burke R et al (2012) A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol 30:918–920. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Chen F, Duggal P, Klein BEK et al (2016) Variation in PTCHD2, CRISP3, NAP1L4, FSCB, and AP3B2 associated with spherical equivalent. Mol Vis 22:783–796PubMedPubMedCentralGoogle Scholar
  21. Chen J, Zhou J, Wu J et al (2017) Aberrant epigenetic alterations of glutathione-S-transferase P1 in age-related nuclear cataract. Curr Eye Res 42:402–410. CrossRefPubMedGoogle Scholar
  22. Cheng C, Ansari MM, Cooper JA, Gong X (2013) EphA2 and Src regulate equatorial cell morphogenesis during lens development. Development 140:4237–4245. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Cho H, Eo S-H (2016) Outlier detection for mass spectrometric data. Methods Mol Biol 1362:91–102. CrossRefPubMedGoogle Scholar
  24. Cho K, Lee M, Gu D et al (2011) Kazrin, and its binding partners ARVCF- and delta-catenin, are required for Xenopus laevis craniofacial development. Dev Dyn 240:2601–2612. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Choudhuri A, Maitra U, Evans T (2013) Translation initiation factor eIF3h targets specific transcripts to polysomes during embryogenesis. Proc Natl Acad Sci USA 110:9818–9823. CrossRefPubMedGoogle Scholar
  26. Dash S, Dang CA, Beebe DC, Lachke SA (2015) Deficiency of the RNA binding protein caprin2 causes lens defects and features of peters anomaly. Dev Dyn 244:1313–1327. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Dash S, Siddam AD, Barnum CE et al (2016) RNA-binding proteins in eye development and disease: implication of conserved RNA granule components. Wiley Interdiscip Rev RNA 7:527–557. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Day RC, Beck CW (2011) Transdifferentiation from cornea to lens in Xenopus laevis depends on BMP signalling and involves upregulation of Wnt signalling. BMC Dev Biol 11:54. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Dong LJ, Chung AE (1991) The expression of the genes for entactin, laminin A, laminin B1 and laminin B2 in murine lens morphogenesis and eye development. Differentiation 48:157–172. CrossRefPubMedGoogle Scholar
  30. Elias JE, Gygi SP (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4:207–214. CrossRefPubMedGoogle Scholar
  31. Eng JK, Jahan TA, Hoopmann MR (2013) Comet: an open-source MS/MS sequence database search tool. Proteomics 13:22–24. CrossRefPubMedGoogle Scholar
  32. Erde J, Loo RRO, Loo JA (2017) Improving proteome coverage and sample recovery with enhanced FASP (eFASP) for quantitative proteomic experiments. Methods Mol Biol 1550:11–18. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Field J, Ye DZ, Shinde M et al (2015) CAP2 in cardiac conduction, sudden cardiac death and eye development. Sci Rep 5:17256. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Forsdahl S, Kiselev Y, Hogseth R et al (2014) Pax6 regulates the expression of Dkk3 in murine and human cell lines, and altered responses to Wnt signaling are shown in FlpIn-3T3 cells stably expressing either the Pax6 or the Pax6(5a) isoform. PLoS One 9:e102559. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Geisert EE, Lu L, Freeman-Anderson NE et al (2009) Gene expression in the mouse eye: an online resource for genetics using 103 strains of mice. Mol Vis 15:1730–1763PubMedPubMedCentralGoogle Scholar
  36. Gonzalez-Huerta LM, Messina-Baas OM, Cuevas-Covarrubias SA (2007) A family with autosomal dominant primary congenital cataract associated with a CRYGC mutation: evidence of clinical heterogeneity. Mol Vis 13:1333–1338PubMedGoogle Scholar
  37. Goswami S, Sheets NL, Zavadil J et al (2003) Spectrum and range of oxidative stress responses of human lens epithelial cells to H2O2 insult. Invest Ophthalmol Vis Sci 44:2084–2093. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Graw J, Klopp N, Neuhäuser-Klaus A et al (2002) Crygf(Rop): the first mutation in the Crygf gene causing a unique radial lens opacity. Invest Ophthalmol Vis Sci 43:2998–3002PubMedGoogle Scholar
  39. Greenlees R, Mihelec M, Yousoof S et al (2015) Mutations in SIPA1L3 cause eye defects through disruption of cell polarity and cytoskeleton organization. Hum Mol Genet 24:5789–5804. CrossRefPubMedGoogle Scholar
  40. Gupta D, Harvey SAK, Kenchegowda D et al (2013) Regulation of mouse lens maturation and gene expression by Krüppel-like factor 4. Exp Eye Res 116:205–218. CrossRefPubMedGoogle Scholar
  41. Gutiérrez-Aguilar M, Baines CP (2013) Physiological and pathological roles of mitochondrial SLC25 carriers. Biochem J 454:371–386. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Ha TT, Sadleir LG, Mandelstam SA et al (2016) A mutation in COL4A2 causes autosomal dominant porencephaly with cataracts. Am J Med Genet A 170A:1059–1063. CrossRefPubMedGoogle Scholar
  43. Haitina T, Lindblom J, Renström T, Fredriksson R (2006) Fourteen novel human members of mitochondrial solute carrier family 25 (SLC25) widely expressed in the central nervous system. Genomics 88:779–790. CrossRefPubMedGoogle Scholar
  44. He S, Pirity MK, Wang W-L et al (2010) Chromatin remodeling enzyme Brg1 is required for mouse lens fiber cell terminal differentiation and its denucleation. Epigenet Chromatin 3:21. CrossRefGoogle Scholar
  45. Heath KE, Campos-Barros A, Toren A et al (2001) Nonmuscle myosin heavy chain IIA mutations define a spectrum of autosomal dominant macrothrombocytopenias: May-Hegglin anomaly and Fechtner, Sebastian, Epstein, and Alport-like syndromes. Am J Hum Genet 69:1033–1045. CrossRefPubMedPubMedCentralGoogle Scholar
  46. Hoang TV, Kumar PKR, Sutharzan S et al (2014) Comparative transcriptome analysis of epithelial and fiber cells in newborn mouse lenses with RNA sequencing. Mol Vis 20:1491–1517PubMedPubMedCentralGoogle Scholar
  47. Hoehenwarter W, Klose J, Jungblut PR (2006) Eye lens proteomics. Amino Acids 30:369–389. CrossRefPubMedGoogle Scholar
  48. Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57. CrossRefGoogle Scholar
  49. Huerva V, Velasco A, Sánchez MC et al (2007) Lattice corneal dystrophy type II: clinical, pathologic, and molecular study in a Spanish family. Eur J Ophthalmol 17:424–429. CrossRefPubMedGoogle Scholar
  50. Jakobs PM, Hess JF, FitzGerald PG et al (2000) Autosomal-dominant congenital cataract associated with a deletion mutation in the human beaded filament protein gene BFSP2. Am J Hum Genet 66:1432–1436. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Ji B, Lim D, Kim J et al (2016) Increased levels of Dickkopf 3 in the aqueous humor of patients with diabetic macular edema. Invest Ophthalmol Vis Sci 57:2296–2304. CrossRefPubMedGoogle Scholar
  52. Kakrana A, Yang A, Anand D et al (2018) iSyTE 2.0: a database for expression-based gene discovery in the eye. Nucleic Acids Res 46:D875–D885. CrossRefPubMedGoogle Scholar
  53. Kasaikina MV, Fomenko DE, Labunskyy VM et al (2011) Roles of the 15-kDa selenoprotein (Sep15) in redox homeostasis and cataract development revealed by the analysis of Sep 15 knockout mice. J Biol Chem 286:33203–33212. CrossRefPubMedPubMedCentralGoogle Scholar
  54. Kato M, Kato Y, Nishida M et al (2007) Functional domain analysis of human HP1 isoforms in Drosophila. Cell Struct Funct 32:57–67. CrossRefPubMedGoogle Scholar
  55. Keller A, Nesvizhskii AI, Kolker E, Aebersold R (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 74:5383–5392. CrossRefPubMedPubMedCentralGoogle Scholar
  56. Khan SY, Ali M, Kabir F et al (2018a) Proteome profiling of developing murine lens through mass spectrometry. Invest Ophthalmol Vis Sci 59:100–107. CrossRefPubMedPubMedCentralGoogle Scholar
  57. Khan SY, Ali M, Kabir F et al (2018b) Identification of novel transcripts and peptides in developing murine lens. Sci Rep. CrossRefPubMedPubMedCentralGoogle Scholar
  58. Kloeckener-Gruissem B, Vandekerckhove K, Nürnberg G et al (2008) Mutation of solute carrier SLC16A12 associates with a syndrome combining juvenile cataract with microcornea and renal glucosuria. Am J Hum Genet 82:772–779. CrossRefPubMedPubMedCentralGoogle Scholar
  59. Krall M, Htun S, Anand D et al (2018) A zebrafish model of foxe3 deficiency demonstrates lens and eye defects with dysregulation of key genes involved in cataract formation in humans. Hum Genet 137:315–328. CrossRefPubMedPubMedCentralGoogle Scholar
  60. Lachke SA, Alkuraya FS, Kneeland SC et al (2011) Mutations in the RNA granule component TDRD7 cause cataract and glaucoma. Science 331:1571–1576. CrossRefPubMedPubMedCentralGoogle Scholar
  61. Lachke SA, Higgins AW, Inagaki M et al (2012a) The cell adhesion gene PVRL3 is associated with congenital ocular defects. Hum Genet 131:235–250. CrossRefPubMedGoogle Scholar
  62. Lachke SA, Ho JWK, Kryukov GV et al (2012b) iSyTE: integrated systems tool for eye gene discovery. Invest Ophthalmol Vis Sci 53:1617–1627. CrossRefPubMedPubMedCentralGoogle Scholar
  63. Lassen N, Bateman JB, Estey T et al (2007) Multiple and additive functions of ALDH3A1 and ALDH1A1: cataract phenotype and ocular oxidative damage in Aldh3a1(−/−)/Aldh1a1(−/−) knock-out mice. J Biol Chem 282:25668–25676. CrossRefPubMedPubMedCentralGoogle Scholar
  64. Lin Q, Zhou N, Zhang N et al (2013) Genetic variations and polymorphisms in the ezrin gene are associated with age-related cataract. Mol Vis 19:1572–1579PubMedPubMedCentralGoogle Scholar
  65. Litt M, Kramer P, LaMorticella DM et al (1998) Autosomal dominant congenital cataract associated with a missense mutation in the human alpha crystallin gene CRYAA. Hum Mol Genet 7:471–474CrossRefGoogle Scholar
  66. Lord-Grignon J, Abdouh M, Bernier G (2006) Identification of genes expressed in retinal progenitor/stem cell colonies isolated from the ocular ciliary body of adult mice. Gene Expr Patterns 6:992–999. CrossRefPubMedGoogle Scholar
  67. Lucey MM, Wang Y, Bustin M, Duncan MK (2008) Differential expression of the HMGN family of chromatin proteins during ocular development. Gene Expr Patterns 8:433–437. CrossRefPubMedPubMedCentralGoogle Scholar
  68. Lyu J, Kim J-A, Chung SK et al (2003) Alteration of cadherin in dexamethasone-induced cataract organ-cultured rat lens. Invest Ophthalmol Vis Sci 44:2034–2040. CrossRefPubMedGoogle Scholar
  69. Mackay D, Ionides A, Kibar Z et al (1999) Connexin46 mutations in autosomal dominant congenital cataract. Am J Hum Genet 64:1357–1364. CrossRefPubMedPubMedCentralGoogle Scholar
  70. Mackay DS, Boskovska OB, Knopf HLS et al (2002) A nonsense mutation in CRYBB1 associated with autosomal dominant cataract linked to human chromosome 22q. Am J Hum Genet 71:1216–1221. CrossRefPubMedPubMedCentralGoogle Scholar
  71. Madhira R (2016) The effects of parsimony logic and extended parsimony clustering on protein identification and quantification in shotgun proteomics. Scholar Archive 3855.
  72. Manthey AL, Lachke SA, FitzGerald PG et al (2014) Loss of Sip1 leads to migration defects and retention of ectodermal markers during lens development. Mech Dev 131:86–110. CrossRefPubMedGoogle Scholar
  73. Medvedovic M, Tomlinson CR, Call MK et al (2006) Gene expression and discovery during lens regeneration in mouse: regulation of epithelial to mesenchymal transition and lens differentiation. Mol Vis 12:422–440PubMedGoogle Scholar
  74. Miki A, Sakurada Y, Tanaka K et al (2018) Genome-wide association study to identify a new susceptibility locus for central serous chorioretinopathy in the Japanese population. Invest Ophthalmol Vis Sci 59:5542–5547. CrossRefPubMedGoogle Scholar
  75. Moré MI, Kirsch FP, Rathjen FG (2001) Targeted ablation of NrCAM or ankyrin-B results in disorganized lens fibers leading to cataract formation. J Cell Biol 154:187–196. CrossRefPubMedPubMedCentralGoogle Scholar
  76. Mukaka MM (2012) Statistics corner: a guide to appropriate use of correlation coefficient in medical research. Malawi Med J 24:69–71PubMedPubMedCentralGoogle Scholar
  77. Müller M, Bhattacharya SS, Moore T et al (2009) Dominant cataract formation in association with a vimentin assembly disrupting mutation. Hum Mol Genet 18:1052–1057. CrossRefPubMedGoogle Scholar
  78. Nakazawa M, Matsubara H, Matsushita Y et al (2016) The human Bcl-2 family member Bcl-rambo localizes to mitochondria and induces apoptosis and morphological aberrations in Drosophila. PLoS One 11:e0157823. CrossRefPubMedPubMedCentralGoogle Scholar
  79. Nelson N, Harvey WR (1999) Vacuolar and plasma membrane proton-adenosinetriphosphatases. Physiol Rev 79:361–385. CrossRefPubMedGoogle Scholar
  80. Nesvizhskii AI, Aebersold R (2005) Interpretation of shotgun proteomic data: the protein inference problem. Mol Cell Proteom 4:1419–1440. CrossRefGoogle Scholar
  81. Ng D (1993) Lenz microphthalmia syndrome. In: Adam MP, Ardinger HH, Pagon RA et al (eds) GeneReviews®. University of Washington, SeattleGoogle Scholar
  82. Oláhová M, Yoon WH, Thompson K et al (2018) Biallelic mutations in ATP5F1D, which encodes a subunit of ATP synthase, cause a metabolic disorder. Am J Hum Genet 102:494–504. CrossRefPubMedPubMedCentralGoogle Scholar
  83. Padma T, Ayyagari R, Murty JS et al (1995) Autosomal dominant zonular cataract with sutural opacities localized to chromosome 17q11-12. Am J Hum Genet 57:840–845PubMedPubMedCentralGoogle Scholar
  84. Patel N, Anand D, Monies D et al (2017) Novel phenotypes and loci identified through clinical genomics approaches to pediatric cataract. Hum Genet 136:205–225. CrossRefPubMedGoogle Scholar
  85. Prieto D, Zolessi FR (2017) Functional diversification of the four MARCKS family members in Zebrafish neural development. J Exp Zool B Mol Dev Evol 328:119–138. CrossRefPubMedGoogle Scholar
  86. Puk O, Ahmad N, Wagner S et al (2011) First mutation in the βA2-crystallin encoding gene is associated with small lenses and age-related cataracts. Invest Ophthalmol Vis Sci 52:2571–2576. CrossRefPubMedGoogle Scholar
  87. Ramachandran RD, Perumalsamy V, Hejtmancik JF (2007) Autosomal recessive juvenile onset cataract associated with mutation in BFSP1. Hum Genet 121:475–482. CrossRefPubMedGoogle Scholar
  88. Riazuddin SA, Yasmeen A, Yao W et al (2005) Mutations in betaB 3-crystallin associated with autosomal recessive cataract in two Pakistani families. Invest Ophthalmol Vis Sci 46:2100–2106. CrossRefPubMedGoogle Scholar
  89. Riba A, Di Nanni N, Mittal N et al (2019) Protein synthesis rates and ribosome occupancies reveal determinants of translation elongation rates. Proc Natl Acad Sci USA 116:15023–15032. CrossRefPubMedGoogle Scholar
  90. Robinson MD, Oshlack A (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11:R25. CrossRefPubMedPubMedCentralGoogle Scholar
  91. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140. CrossRefPubMedPubMedCentralGoogle Scholar
  92. Rong X, Qiu X, Jiang Y et al (2016) Effects of histone acetylation on superoxide dismutase 1 gene expression in the pathogenesis of senile cataract. Sci Rep 6:34704. CrossRefPubMedPubMedCentralGoogle Scholar
  93. Santhiya ST, Shyam Manohar M, Rawlley D et al (2002) Novel mutations in the gamma-crystallin genes cause autosomal dominant congenital cataracts. J Med Genet 39:352–358. CrossRefPubMedPubMedCentralGoogle Scholar
  94. Shiels A, Mackay D, Ionides A et al (1998) A missense mutation in the human connexin50 gene (GJA8) underlies autosomal dominant “zonular pulverulent” cataract, on chromosome 1q. Am J Hum Genet 62:526–532. CrossRefPubMedPubMedCentralGoogle Scholar
  95. Siddam AD, Gautier-Courteille C, Perez-Campos L et al (2018) The RNA-binding protein Celf1 post-transcriptionally regulates p27Kip1 and Dnase2b to control fiber cell nuclear degradation in lens development. PLoS Genet 14:e1007278. CrossRefPubMedPubMedCentralGoogle Scholar
  96. Srivastava R, Budak G, Dash S et al (2017) Transcriptome analysis of developing lens reveals abundance of novel transcripts and extensive splicing alterations. Sci Rep 7:11572. CrossRefPubMedPubMedCentralGoogle Scholar
  97. Stephan DA, Gillanders E, Vanderveen D et al (1999) Progressive juvenile-onset punctate cataracts caused by mutation of the gammaD-crystallin gene. Proc Natl Acad Sci USA 96:1008–1012. CrossRefPubMedGoogle Scholar
  98. Sun H, Ma Z, Li Y et al (2005) Gamma-S crystallin gene (CRYGS) mutation causes dominant progressive cortical cataract in humans. J Med Genet 42:706–710. CrossRefPubMedPubMedCentralGoogle Scholar
  99. Swarup A, Bell BA, Du J et al (2018) Deletion of GLUT1 in mouse lens epithelium leads to cataract formation. Exp Eye Res 172:45–53. CrossRefPubMedPubMedCentralGoogle Scholar
  100. Tawk M, Titeux M, Fallet C et al (2003) Synemin expression in developing normal and pathological human retina and lens. Exp Neurol 183:499–507. CrossRefPubMedGoogle Scholar
  101. Teo ZL, McQueen-Miscamble L, Turner K et al (2014) Integrin linked kinase (ILK) is required for lens epithelial cell survival, proliferation and differentiation. Exp Eye Res 121:130–142. CrossRefPubMedGoogle Scholar
  102. Tian R, Xu Y, Dou W-W, Zhang H (2018) Bioinformatics analysis of microarray data to explore the key genes involved in HSF4 mutation-induced cataract. Int J Ophthalmol 11:910–917. CrossRefPubMedPubMedCentralGoogle Scholar
  103. Vorontsova I, Lam L, Delpire E et al (2014) Identification of the WNK-SPAK/OSR1 signaling pathway in rodent and human lenses. Invest Ophthalmol Vis Sci 56:310–321. CrossRefPubMedGoogle Scholar
  104. Wang X, Garcia CM, Shui Y-B, Beebe DC (2004) Expression and regulation of alpha-, beta-, and gamma-crystallins in mammalian lens epithelial cells. Invest Ophthalmol Vis Sci 45:3608–3619. CrossRefPubMedGoogle Scholar
  105. Wang Z, Han J, David LL, Schey KL (2013) Proteomics and phosphoproteomics analysis of human lens fiber cell membranes. Invest Ophthalmol Vis Sci 54:1135–1143. CrossRefPubMedPubMedCentralGoogle Scholar
  106. Wang B, Hom G, Zhou S et al (2017a) The oxidized thiol proteome in aging and cataractous mouse and human lens revealed by ICAT labeling. Aging Cell 16:244–261. CrossRefPubMedGoogle Scholar
  107. Wang Y, Terrell AM, Riggio BA et al (2017b) β1-integrin deletion from the lens activates cellular stress responses leading to apoptosis and fibrosis. Invest Ophthalmol Vis Sci 58:3896–3922. CrossRefPubMedPubMedCentralGoogle Scholar
  108. Whitson JA, Zhang X, Medvedovic M et al (2017) Transcriptome of the GSH-depleted lens reveals changes in detoxification and EMT signaling genes, transport systems, and lipid homeostasis. Invest Ophthalmol Vis Sci 58:2666–2684. CrossRefPubMedPubMedCentralGoogle Scholar
  109. Wigle JT, Chowdhury K, Gruss P, Oliver G (1999) Prox1 function is crucial for mouse lens-fibre elongation. Nat Genet 21:318–322. CrossRefPubMedGoogle Scholar
  110. Wilmarth PA, Riviere MA, David LL (2009) Techniques for accurate protein identification in shotgun proteomic studies of human, mouse, bovine, and chicken lenses. J Ocul Biol Dis Infor 2:223–234. CrossRefPubMedPubMedCentralGoogle Scholar
  111. Wolf L, Harrison W, Huang J et al (2013) Histone posttranslational modifications and cell fate determination: lens induction requires the lysine acetyltransferases CBP and p300. Nucleic Acids Res 41:10199–10214. CrossRefPubMedPubMedCentralGoogle Scholar
  112. Zhao Y, Wilmarth PA, Cheng C et al (2019) Proteome-transcriptome analysis and proteome remodeling in mouse lens epithelium and fibers. Exp Eye Res 179:32–46. CrossRefPubMedGoogle Scholar
  113. Zhou Y, Bennett TM, Shiels A (2016) Lens ER-stress response during cataract development in Mip-mutant mice. Biochim Biophys Acta 1862:1433–1442. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Sandeep Aryal
    • 1
  • Deepti Anand
    • 1
  • Francisco G. Hernandez
    • 1
  • Bailey A. T. Weatherbee
    • 1
  • Hongzhan Huang
    • 2
  • Ashok P. Reddy
    • 3
  • Phillip A. Wilmarth
    • 3
  • Larry L. David
    • 3
    • 4
  • Salil A. Lachke
    • 1
    • 2
    Email author
  1. 1.Department of Biological SciencesUniversity of DelawareNewarkUSA
  2. 2.Center for Bioinformatics and Computational BiologyUniversity of DelawareNewarkUSA
  3. 3.Proteomics Shared ResourceOregon Health and Science UniversityPortlandUSA
  4. 4.Department of Chemical Physiology and BiochemistryOregon Health and Science UniversityPortlandUSA

Personalised recommendations