Advertisement

A review of gene-by-air pollution interactions for cardiovascular disease, risk factors, and biomarkers

  • Cavin K. Ward-CavinessEmail author
Review
  • 93 Downloads

Abstract

Air pollution is recognized as causal factor for cardiovascular disease (CVD) and is associated with multiple CVD risk factors. Substantial research effort has been invested in understanding the linkages between genetic variation and CVD risk, resulting in over 50 CVD-associated genetic loci. More recently, gene–air pollution interaction studies have quantified the contribution of genetic variation to inter-individual heterogeneity in air pollution health risks, and aided in elucidating mechanisms of air pollution exposure health risks. Here, we perform a comprehensive review of gene–air pollution interaction studies for CVD, as well as risk factors and emerging CVD biomarkers. The literature review revealed that most published interaction studies have been candidate gene studies, causing observed interactions to cluster in a few genes related to detoxification (GSTM1 and GSTT1), inflammation (IL-6), iron processing (HFE), and microRNA processing (GEMIN4 and DGCR8). There have been a few genome-wide interaction studies with results indicating that interactions extend beyond commonly considered genetic loci. Gene–air pollution interactions are observed for exposure periods ranging from hours to years and a variety of air pollutants including particulate matter, gaseous pollutants, and pollutant sources such as traffic. Though the existing evidence for the existence of relevant gene–air pollution interactions for CVD outcomes is substantial, it could be strengthened by improved replication and meta-analyses as well as functional validation.

Notes

Acknowledgements

Special thanks are given to the staff of the US EPA Library for their assistance in the literature review, in particular, Jeremy Frye for his effort.

Compliance with ethical standards

Conflict of interest

There are no conflicts of interest to disclose. The views expressed in this manuscript do not necessarily represent the views or policies of the US Environmental Protection Agency. Any mention of trade names does not constitute endorsement.

References

  1. Adam M, Imboden M, Boes E, Schaffner E, Künzli N, Phuleria HC, Kronenberg F, Gaspoz J-M, Carballo D, Probst-Hensch N (2014) Modifying effect of a common polymorphism in the interleukin-6 promoter on the relationship between long-term exposure to traffic-related particulate matter and heart rate variability. PLoS One 9:e104978.  https://doi.org/10.1371/journal.pone.0104978 CrossRefGoogle Scholar
  2. Alexis NE, Zhou H, Lay JC, Harris B, Hernandez ML, Lu T-S, Bromberg PA, Diaz-Sanchez D, Devlin RB, Kleeberger SR, Peden DB (2009) The glutathione-S-transferase Mu 1 null genotype modulates ozone-induced airway inflammation in human subjects. J Allergy Clin Immunol 124:1222–1228.e5.  https://doi.org/10.1016/j.jaci.2009.07.036 CrossRefGoogle Scholar
  3. American Heart Association (2017) Cardiovascular disease: a costly burden for America projections through 2035. American Heart Association. http://www.heart.org/idc/groups/heart-public/@wcm/@adv/documents/downloadable/ucm_491543.pdf. Accessed 15 Feb 2019
  4. Baccarelli A, Cassano PA, Litonjua A, Park SK, Suh H, Sparrow D, Vokonas P, Schwartz J (2008) Cardiac autonomic dysfunction effects from particulate air pollution and protection by dietary methyl nutrients and metabolic polymorphisms. Circulation 117:1802–1809.  https://doi.org/10.1161/circulationaha.107.726067 CrossRefGoogle Scholar
  5. Baja ES, Schwartz JD, Wellenius GA, Coull BA, Zanobetti A, Vokonas PS, Suh HH (2010) Traffic-related air pollution and QT interval: modification by diabetes, obesity, and oxidative stress gene polymorphisms in the normative aging study. Environ Health Perspect 118:840–846.  https://doi.org/10.1289/ehp.0901396 CrossRefGoogle Scholar
  6. Barwari T, Joshi A, Mayr M (2016) MicroRNAs in cardiovascular disease. J Am Coll Cardiol 68:2577–2584.  https://doi.org/10.1016/j.jacc.2016.09.945 CrossRefGoogle Scholar
  7. Bind M-A, Coull B, Suh H, Wright R, Baccarelli A, Vokonas P, Schwartz J (2014) A novel genetic score approach using instruments to investigate interactions between pathways and environment: application to air pollution. PLoS One 9:e96000.  https://doi.org/10.1371/journal.pone.0096000 CrossRefGoogle Scholar
  8. Breton CV, Yao J, Millstein J, Gao L, Siegmund KD, Mack W, Whitfield-Maxwell L, Lurmann F, Hodis H, Avol E, Gilliland FD (2016) Prenatal air pollution exposures, DNA methyl transferase genotypes, and associations with newborn LINE1 and Alu methylation and childhood blood pressure and carotid intima-media thickness in the children’s health study. Environ Health Perspect 124:1905–1912.  https://doi.org/10.1289/EHP181 CrossRefGoogle Scholar
  9. Brook RD, Rajagopalan S, Pope CA III, Brook JR, Bhatnagar A, Diez-Roux AV, Holguin F, Hong Y, Luepker RV, Mittleman MA (2010) Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation 121:2331–2378CrossRefGoogle Scholar
  10. Byun HM, Colicino E, Trevisi L, Fan T, Christiani DC, Baccarelli AA (2016) Effects of air pollution and blood mitochondrial dna methylation on markers of heart rate variability. J Am Heart Assoc Cardiovasc Cerebrovasc Dis 5:e003218.  https://doi.org/10.1161/JAHA.116.003218 Google Scholar
  11. Chahine T, Baccarelli A, Litonjua A, Wright RO, Suh H, Gold DR, Sparrow D, Vokonas P, Schwartz J (2007) Particulate air pollution, oxidative stress genes, and heart rate variability in an elderly cohort. Environ Health Perspect 115:1617–1622.  https://doi.org/10.1289/ehp.10318 CrossRefGoogle Scholar
  12. Chuang K-J, Chan C-C, Su T-C, Lee C-T, Tang C-S (2007) The effect of urban air pollution on inflammation, oxidative stress, coagulation, and autonomic dysfunction in young adults. Am J Respir Crit Care Med 176:370–376.  https://doi.org/10.1164/rccm.200611-1627OC CrossRefGoogle Scholar
  13. Chuang K-J, Yan Y-H, Chiu S-Y, Cheng T-J (2011) Long-term air pollution exposure and risk factors for cardiovascular diseases among the elderly in Taiwan. Occup Environ Med 68:64–68.  https://doi.org/10.1136/oem.2009.052704 CrossRefGoogle Scholar
  14. Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, Balakrishnan K, Brunekreef B, Dandona L, Dandona R, Feigin V, Freedman G, Hubbell B, Jobling A, Kan H, Knibbs L, Liu Y, Martin R, Morawska L, Pope CA, Shin H, Straif K, Shaddick G, Thomas M, van Dingenen R, van Donkelaar A, Vos T, Murray CJL, Forouzanfar MH (2017) Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet 389:1907–1918.  https://doi.org/10.1016/S0140-6736(17)30505-6 CrossRefGoogle Scholar
  15. Derwall M, Malhotra R, Lai CS, Beppu Y, Aikawa E, Seehra JS, Zapol WM, Bloch KD, Yu PB (2012) Inhibition of bone morphogenetic protein signaling reduces vascular calcification and atherosclerosis. Arterioscler Thromb Vasc Biol 32:613–622.  https://doi.org/10.1161/ATVBAHA.111.242594 CrossRefGoogle Scholar
  16. ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74.  https://doi.org/10.1038/nature11247 CrossRefGoogle Scholar
  17. Favé M-J, Lamaze FC, Soave D, Hodgkinson A, Gauvin H, Bruat V, Grenier J-C, Gbeha E, Skead K, Smargiassi A, Johnson M, Idaghdour Y, Awadalla P (2018) Gene-by-environment interactions in urban populations modulate risk phenotypes. Nat Commun 9:827.  https://doi.org/10.1038/s41467-018-03202-2 CrossRefGoogle Scholar
  18. Fossati S, Baccarelli A, Zanobetti A, Hoxha M, Vokonas PS, Wright RO, Schwartz J (2014) Ambient particulate air pollution and microRNAs in elderly men. Epidemiology (Cambridge, Mass.) 25:68–78.  https://doi.org/10.1097/ede.0000000000000026 CrossRefGoogle Scholar
  19. Frampton MW, Pietropaoli A, Dentler M, Chalupa D, Little EL, Stewart J, Frasier L, Oakes D, Wiltshire J, Vora R, Utell MJ (2015) Cardiovascular effects of ozone in healthy subjects with and without deletion of glutathione-S-transferase M1. Inhalation Toxicol 27:113–119.  https://doi.org/10.3109/08958378.2014.996272 CrossRefGoogle Scholar
  20. Fuller CH, Feeser KR, Sarnat JA, O’Neill MS (2017) Air pollution, cardiovascular endpoints and susceptibility by stress and material resources: a systematic review of the evidence. Environ Health Global Access Sci Source 16:58.  https://doi.org/10.1186/s12940-017-0270-0 Google Scholar
  21. Gauderman WJ, Mukherjee B, Aschard H, Hsu L, Lewinger JP, Patel CJ, Witte JS, Amos C, Tai CG, Conti D, Torgerson DG, Lee S, Chatterjee N (2017) Update on the state of the science for analytical methods for gene-environment interactions. Am J Epidemiol 186:762–770.  https://doi.org/10.1093/aje/kwx228 CrossRefGoogle Scholar
  22. GBD (2015) Risk Factors Collaborators (2016) Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. The Lancet 388:1659–1724.  https://doi.org/10.1016/S0140-6736(16)31679-8 Google Scholar
  23. Hruska KA, Mathew S, Saab G (2005) Bone morphogenetic proteins in vascular calcification. Circ Res 97:105–114.  https://doi.org/10.1161/01.RES.00000175571.53833.6c CrossRefGoogle Scholar
  24. Hunter DJ (2005) Gene–environment interactions in human diseases. Nat Rev Genet 6:287.  https://doi.org/10.1038/nrg1578 CrossRefGoogle Scholar
  25. Jang N, Stewart G, Jones G (2005) Polymorphisms within the PHF11 gene at chromosome 13q14 are associated with childhood atopic dermatitis. Genes Immun 6:262.  https://doi.org/10.1038/sj.gene.6364169 CrossRefGoogle Scholar
  26. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44:D457–D462.  https://doi.org/10.1093/nar/gkv1070 CrossRefGoogle Scholar
  27. Khoury MJ (2017) Editorial: emergence of gene-environment interaction analysis in epidemiologic research. Am J Epidemiol 186:751–752.  https://doi.org/10.1093/aje/kwx226 CrossRefGoogle Scholar
  28. Levinsson A, Olin A-C, Modig L, Dahgam S, Björck L, Rosengren A, Nyberg F (2014) Interaction effects of long-term air pollution exposure and variants in the GSTP1, GSTT1 and GSTCD genes on risk of acute myocardial infarction and hypertension: a case-control study. PLoS One 9:e99043.  https://doi.org/10.1371/journal.pone.0099043 CrossRefGoogle Scholar
  29. Li R, Chambless L (2007) Test for additive interaction in proportional hazards models. Ann Epidemiol 17:227–236.  https://doi.org/10.1016/j.annepidem.2006.10.009 CrossRefGoogle Scholar
  30. Ljungman P, Bellander T, Schneider A, Breitner S, Forastiere F, Hampel R, Illig T, Jacquemin B, Katsouyanni K, von Klot S, Koenig W, Lanki T, Nyberg F, Pekkanen J, Pistelli R, Pitsavos C, Rosenqvist M, Sunyer J, Peters A (2009) Modification of the interleukin-6 response to air pollution by interleukin-6 and fibrinogen polymorphisms. Environ Health Perspect 117:1373–1379.  https://doi.org/10.1289/ehp.0800370 CrossRefGoogle Scholar
  31. Madrigano J, Baccarelli A, Wright R, Suh H, Sparrow D, Vokonas P, Schwartz J (2009) Air pollution, obesity, genes, and cellular adhesion molecules. Occup Environ Med.  https://doi.org/10.1136/oem.2009.046193 Google Scholar
  32. Madrigano J, Baccarelli A, Mittleman MA, Wright RO, Sparrow D, Vokonas PS, Tarantini L, Schwartz J (2011) Prolonged exposure to particulate pollution, genes associated with glutathione pathways, and DNA methylation in a cohort of older men. Environ Health Perspect 119:977–982.  https://doi.org/10.1289/ehp.1002773 CrossRefGoogle Scholar
  33. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, Cho JH, Guttmacher AE, Kong A, Kruglyak L, Mardis E, Rotimi CN, Slatkin M, Valle D, Whittemore AS, Boehnke M, Clark AG, Eichler EE, Gibson G, Haines JL, Mackay TFC, McCarroll SA, Visscher PM (2009) Finding the missing heritability of complex diseases. Nature 461:747–753.  https://doi.org/10.1038/nature08494 CrossRefGoogle Scholar
  34. McAllister K, Mechanic LE, Amos C, Aschard H, Blair IA, Chatterjee N, Conti D, Gauderman WJ, Hsu L, Hutter CM, Jankowska MM, Kerr J, Kraft P, Montgomery SB, Mukherjee B, Papanicolaou GJ, Patel CJ, Ritchie MD, Ritz BR, Thomas DC, Wei P, Witte JS, on behalf of workshop p (2017) Current challenges and new opportunities for gene-environment interaction studies of complex diseases. Am J Epidemiol 186:753–761.  https://doi.org/10.1093/aje/kwx227 CrossRefGoogle Scholar
  35. McGarrah RW, Crown SB, Zhang G-F, Shah SH, Newgard CB (2018) Cardiovascular metabolomics. Circ Res 122:1238–1258CrossRefGoogle Scholar
  36. McGuinn LA, Schneider A, McGarrah RW, Ward-Caviness C, Neas LM, Di Q, Schwartz J, Hauser ER, Kraus WE, Cascio WE, Diaz-Sanchez D, Devlin RB (2019) Association of long-term PM2.5 exposure with traditional and novel lipid measures related to cardiovascular disease risk. Environ Int 122:193–200.  https://doi.org/10.1016/j.envint.2018.11.001 CrossRefGoogle Scholar
  37. Mikati I, Benson AF, Luben TJ, Sacks JD, Richmond-Bryant J (2018) Disparities in distribution of particulate matter emission sources by race and poverty status. Am J Public Health 108:480–485.  https://doi.org/10.2105/AJPH.2017.304297 CrossRefGoogle Scholar
  38. Mordukhovich I, Wilker E, Suh H, Wright R, Sparrow D, Vokonas PS, Schwartz J (2009) Black carbon exposure, oxidative stress genes, and blood pressure in a repeated-measures study. Environ Health Perspect 117:1767–1772.  https://doi.org/10.1289/ehp.0900591 CrossRefGoogle Scholar
  39. Muka T, Koromani F, Portilla E, O’Connor A, Bramer WM, Troup J, Chowdhury R, Dehghan A, Franco OH (2016) The role of epigenetic modifications in cardiovascular disease: a systematic review. Int J Cardiol 212:174–183.  https://doi.org/10.1016/j.ijcard.2016.03.062 CrossRefGoogle Scholar
  40. Mukherjee B, Ahn J, Gruber SB, Rennert G, Moreno V, Chatterjee N (2008) Tests for gene-environment interaction from case-control data: a novel study of type I error, power and designs. Genet Epidemiol 32:615–626.  https://doi.org/10.1002/gepi.20337 CrossRefGoogle Scholar
  41. Murcray CE, Lewinger JP, Gauderman WJ (2009) Gene-environment interaction in genome-wide association studies. Am J Epidemiol 169:219–226.  https://doi.org/10.1093/aje/kwn353 CrossRefGoogle Scholar
  42. Naghavi M, Abajobir AA, Abbafati C, Abbas KM, Abd-Allah F, Abera SF, Aboyans V, Adetokunboh O, Afshin A, Agrawal A, Ahmadi A, Ahmed MB, Aichour AN, Aichour MTE, Aichour I, Aiyar S, Alahdab F, Al-Aly Z, Alam K, Alam N, Alam T, Alene KA, Al-Eyadhy A, Ali SD, Alizadeh-Navaei R, Alkaabi JM, Aa Alkerwi, Alla F, Allebeck P, Allen C, Al-Raddadi R, Alsharif U, Altirkawi KA, Alvis-Guzman N, Amare AT, Amini E, Ammar W, Amoako YA, Anber N, Andersen HH, Andrei CL, Androudi S, Ansari H, Antonio CAT, Anwari P, Ärnlöv J, Arora M, Artaman A, Aryal KK, Asayesh H, Asgedom SW, Atey TM, Avila-Burgos L, Avokpaho EFG, Awasthi A, Babalola TK, Bacha U, Balakrishnan K, Barac A, Barboza MA, Barker-Collo SL, Barquera S, Barregard L, Barrero LH, Baune BT, Bedi N, Beghi E, Béjot Y, Bekele BB, Bell ML, Bennett JR, Bensenor IM, Berhane A, Bernabé E, Betsu BD, Beuran M, Bhatt S, Biadgilign S, Bienhoff K, Bikbov B, Bisanzio D, Bourne RRA, Breitborde NJK, Bulto LNB, Bumgarner BR, Butt ZA, Cahuana-Hurtado L, Cameron E, Campuzano JC, Car J, Cárdenas R, Carrero JJ, Carter A, Casey DC, Castañeda-Orjuela CA, Catalá-López F, Charlson FJ, Chibueze CE, Chimed-Ochir O, Chisumpa VH et al (2017) Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet 390:1151–1210.  https://doi.org/10.1016/S0140-6736(17)32152-9 CrossRefGoogle Scholar
  43. Newby DE, on behalf of Esc Working Group on Thrombosis EAfCP, Rehabilitation, Association ESCHF, Mannucci PM, on behalf of Esc Working Group on Thrombosis EAfCP, Rehabilitation, Association ESCHF, Tell GS, on behalf of Esc Working Group on Thrombosis EAfCP, Rehabilitation, Association ESCHF, Baccarelli AA, on behalf of Esc Working Group on Thrombosis EAfCP, Rehabilitation, Association ESCHF, Brook RD, on behalf of Esc Working Group on Thrombosis EAfCP, Rehabilitation, Association ESCHF, Donaldson K, on behalf of Esc Working Group on Thrombosis EAfCP, Rehabilitation, Association ESCHF, Forastiere F, on behalf of Esc Working Group on Thrombosis EAfCP, Rehabilitation, Association ESCHF, Franchini M, on behalf of Esc Working Group on Thrombosis EAfCP, Rehabilitation, Association ESCHF, Franco OH, on behalf of Esc Working Group on Thrombosis EAfCP, Rehabilitation, Association ESCHF, Graham I, on behalf of Esc Working Group on Thrombosis EAfCP, Rehabilitation, Association ESCHF, Hoek G, on behalf of Esc Working Group on Thrombosis EAfCP, Rehabilitation, Association ESCHF, Hoffmann B, on behalf of Esc Working Group on Thrombosis EAfCP, Rehabilitation, Association ESCHF, Hoylaerts MF, on behalf of Esc Working Group on Thrombosis EAfCP, Rehabilitation, Association ESCHF, Künzli N, on behalf of Esc Working Group on Thrombosis EAfCP, Rehabilitation, Association ESCHF, Mills N, on behalf of Esc Working Group on Thrombosis EAfCP, Rehabilitation, Association ESCHF, Pekkanen J, on behalf of Esc Working Group on Thrombosis EAfCP, Rehabilitation, Association ESCHF, Peters A, on behalf of Esc Working Group on Thrombosis EAfCP, Rehabilitation, Association ESCHF, Piepoli MF, on behalf of Esc Working Group on Thrombosis EAfCP, Rehabilitation, Association ESCHF, Rajagopalan S, on behalf of Esc Working Group on Thrombosis EAfCP, Rehabilitation, Association ESCHF, Storey RF, on behalf of Esc Working Group on Thrombosis EAfCP, Rehabilitation, Association ESCHF (2015) Expert position paper on air pollution and cardiovascular disease. Eur Heart J 36:83–93.  https://doi.org/10.1093/eurheartj/ehu458 CrossRefGoogle Scholar
  44. Nikpay M, Goel A, Won H-H, Hall LM, Willenborg C, Kanoni S, Saleheen D, Kyriakou T, Nelson CP, Hopewell JC, Webb TR, Zeng L, Dehghan A, Alver M, Armasu SM, Auro K, Bjonnes A, Chasman DI, Chen S, Ford I, Franceschini N, Gieger C, Grace C, Gustafsson S, Huang J, Hwang S-J, Kim YK, Kleber ME, Lau KW, Lu X, Lu Y, Lyytikäinen L-P, Mihailov E, Morrison AC, Pervjakova N, Qu L, Rose LM, Salfati E, Saxena R, Scholz M, Smith AV, Tikkanen E, Uitterlinden A, Yang X, Zhang W, Zhao W, de Andrade M, de Vries PS, van Zuydam NR, Anand SS, Bertram L, Beutner F, Dedoussis G, Frossard P, Gauguier D, Goodall AH, Gottesman O, Haber M, Han B-G, Huang J, Jalilzadeh S, Kessler T, König IR, Lannfelt L, Lieb W, Lind L, Lindgren CM, Lokki M-L, Magnusson PK, Mallick NH, Mehra N, Meitinger T, F-u-R Memon, Morris AP, Nieminen MS, Pedersen NL, Peters A, Rallidis LS, Rasheed A, Samuel M, Shah SH, Sinisalo J, Stirrups KE, Trompet S, Wang L, Zaman KS, Ardissino D, Boerwinkle E, Borecki IB, Bottinger EP, Buring JE, Chambers JC, Collins R, Cupples LA, Danesh J, Demuth I, Elosua R, Epstein SE, Esko T, Feitosa MF et al (2015) A comprehensive 1000 genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet 47:1121–1130.  https://doi.org/10.1038/ng.3396 CrossRefGoogle Scholar
  45. Ono K, Kuwabara Y, Han J (2011) MicroRNAs and cardiovascular diseases. FEBS J 278:1619–1633.  https://doi.org/10.1111/j.1742-4658.2011.08090.x CrossRefGoogle Scholar
  46. Panasevich S, Leander K, Ljungman P, Bellander T, de Faire U, Pershagen G, Nyberg F (2013) Interaction between air pollution exposure and genes in relation to levels of inflammatory markers and risk of myocardial infarction. BMJ Open.  https://doi.org/10.1136/bmjopen-2013-003058 Google Scholar
  47. Park SK, O’Neill MS, Wright RO, Hu H, Vokonas PS, Sparrow D, Suh H, Schwartz J (2006) HFE genotype, particulate air pollution, and heart rate variability. Gene Environ Interact 114:2798–2805.  https://doi.org/10.1161/circulationaha.106.643197 Google Scholar
  48. Park SK, Hu H, Wright RO, Schwartz J, Cheng Y, Sparrow D, Vokonas PS, Weisskopf MG (2009) Iron metabolism genes, low-level lead exposure, and QT interval. Environ Health Perspect 117:80–85.  https://doi.org/10.1289/ehp.11559 CrossRefGoogle Scholar
  49. Peters A, Greven S, Heid IM, Baldari F, Breitner S, Bellander T, Chrysohoou C, Illig T, Jacquemin B, Koenig W, Lanki T, Nyberg F, Pekkanen J, Pistelli R, Rückerl R, Stefanadis C, Schneider A, Sunyer J, Wichmann HE (2009) fibrinogen genes modify the fibrinogen response to ambient particulate matter. Am J Respir Crit Care Med 179:484–491.  https://doi.org/10.1164/rccm.200805-751OC CrossRefGoogle Scholar
  50. Rahman N, Stewart G, Jones G (2010) A role for the atopy-associated gene PHF11 in T-cell activation and viability. Immunol Cell Biol 88:817–824.  https://doi.org/10.1038/icb.2010.57 CrossRefGoogle Scholar
  51. Ren C, Baccarelli A, Wilker E, Suh H, Sparrow D, Vokonas P, Wright R, Schwartz J (2010a) Lipid and endothelial related genes, ambient particulate matter, and heart rate variability—the VA Normative Aging Study. J Epidemiol Community Health 64:49–56.  https://doi.org/10.1136/jech.2008.083295 CrossRefGoogle Scholar
  52. Ren C, Park SK, Vokonas PS, Sparrow D, Wilker E, Baccarelli A, Suh HH, Tucker KL, Wright RO, Schwartz J (2010b) Air pollution and homocysteine: more evidence that oxidative stress-related genes modify effects of particulate air pollution. Epidemiology (Cambridge, Mass) 21:198–206.  https://doi.org/10.1097/ede.0b013e3181cc8bfc CrossRefGoogle Scholar
  53. Ren C, Vokonas PS, Suh H, Fang S, Christiani DC, Schwartz J (2010c) Effect modification of air pollution on Urinary 8-Hydroxy-2’-Deoxyguanosine by genotypes: an application of the multiple testing procedure to identify significant SNP interactions. Environ Health 9:78.  https://doi.org/10.1186/1476-069x-9-78 CrossRefGoogle Scholar
  54. Schneider A, Neas LM, Graff DW, Herbst MC, Cascio WE, Schmitt MT, Buse JB, Peters A, Devlin RB (2010) Association of cardiac and vascular changes with ambient PM2.5 in diabetic individuals. Particle Fibre Toxicol 7:14.  https://doi.org/10.1186/1743-8977-7-14 CrossRefGoogle Scholar
  55. Schwartz J, Park SK, O’Neill MS, Vokonas PS, Sparrow D, Weiss S, Kelsey K (2005) Glutathione-S-transferase M1, obesity, statins, and autonomic effects of particles. Am J Respir Crit Care Med 172:1529–1533.  https://doi.org/10.1164/rccm.200412-1698OC CrossRefGoogle Scholar
  56. Simkhovich BZ, Kleinman MT, Kloner RA (2008) Air pollution and cardiovascular injury. Epidemiol Toxicol Mech 52:719–726.  https://doi.org/10.1016/j.jacc.2008.05.029 Google Scholar
  57. Siti HN, Kamisah Y, Kamsiah J (2015) The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vascul Pharmacol 71:40–56.  https://doi.org/10.1016/j.vph.2015.03.005 CrossRefGoogle Scholar
  58. So H-C, Gui AHS, Cherny SS, Sham PC (2011) Evaluating the heritability explained by known susceptibility variants: a survey of ten complex diseases. Genet Epidemiol 35:310–317.  https://doi.org/10.1002/gepi.20579 CrossRefGoogle Scholar
  59. Sørensen M, Hoffmann B, Hvidberg M, Ketzel M, Jensen SS, Andersen ZJ, Tjønneland A, Overvad K, Raaschou-Nielsen O (2012) Long-term exposure to traffic-related air pollution associated with blood pressure and self-reported hypertension in a Danish cohort. Environ Health Perspect 120:418–424.  https://doi.org/10.1289/ehp.1103631 CrossRefGoogle Scholar
  60. The GTEx Consortium (2015) The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348:648–660.  https://doi.org/10.1126/science.1262110 CrossRefGoogle Scholar
  61. Van Hee VC, Adar SD, Szpiro AA, Barr RG, Roux AD, Bluemke DA, Sheppard L, Gill EA, Bahrami H, Wassel C, Sale MM, Siscovick DS, Rotter JI, Rich SS, Kaufman JD (2010) Common genetic variation, residential proximity to traffic exposure, and left ventricular mass: the multi-ethnic study of atherosclerosis. Environ Health Perspect 118:962–969.  https://doi.org/10.1289/ehp.0901535 CrossRefGoogle Scholar
  62. Vercelli D (2003) Genetic polymorphism in allergy and asthma. Curr Opin Immunol 15:609–613.  https://doi.org/10.1016/j.coi.2003.09.005 CrossRefGoogle Scholar
  63. Ward-Caviness CK, Kraus WE, Blach C, Haynes CS, Dowdy E, Miranda ML, Devlin RB, Diaz-Sanchez D, Cascio WE, Mukerjee S, Stallings C, Smith LA, Gregory SG, Shah SH, Hauser ER, Neas LM (2015) Association of roadway proximity with fasting plasma glucose and metabolic risk factors for cardiovascular disease in a cross-sectional study of cardiac catheterization patients. Environ Health Perspect 123:1007–1014.  https://doi.org/10.1289/ehp.1306980 CrossRefGoogle Scholar
  64. Ward-Caviness CK, Neas LM, Blach C, Haynes CS, LaRocque-Abramson K, Grass E, Dowdy E, Devlin RB, Diaz-Sanchez D, Cascio WE, Lynn Miranda M, Gregory SG, Shah SH, Kraus WE, Hauser ER (2016) Genetic variants in the bone morphogenic protein gene family modify the association between residential exposure to traffic and peripheral arterial disease. PLoS One 11:e0152670.  https://doi.org/10.1371/journal.pone.0152670 CrossRefGoogle Scholar
  65. Ward-Caviness CK, Neas LM, Blach C, Haynes CS, LaRocque-Abramson K, Grass E, Dowdy ZE, Devlin RB, Diaz-Sanchez D, Cascio WE, Miranda ML, Gregory SG, Shah SH, Kraus WE, Hauser ER (2017) A genome-wide trans-ethnic interaction study links the PIGR-FCAMR locus to coronary atherosclerosis via interactions between genetic variants and residential exposure to traffic. PLoS One 12:e0173880.  https://doi.org/10.1371/journal.pone.0173880 CrossRefGoogle Scholar
  66. Ward-Caviness CK, Kraus WE, Blach C, Haynes CS, Dowdy E, Miranda ML, Devlin R, Diaz-Sanchez D, Cascio WE, Mukerjee S, Stallings C, Smith LA, Gregory SG, Shah SH, Neas LM, Hauser ER (2018) Associations between residential proximity to traffic and vascular disease in a cardiac catheterization cohort. Arterioscler Thromb Vasc Biol 38:275–282CrossRefGoogle Scholar
  67. Wilker E, Mittleman MA, Litonjua AA, Poon A, Baccarelli A, Suh H, Wright RO, Sparrow D, Vokonas P, Schwartz J (2009) Postural changes in blood pressure associated with interactions between candidate genes for chronic respiratory diseases and exposure to particulate matter. Environ Health Perspect 117:935–940.  https://doi.org/10.1289/ehp.0800279 CrossRefGoogle Scholar
  68. Wilker EH, Baccarelli A, Suh H, Vokonas P, Wright RO, Schwartz J (2010) Black carbon exposures, blood pressure, and interactions with single nucleotide polymorphisms in MicroRNA processing genes. Environ Health Perspect 118:943–948.  https://doi.org/10.1289/ehp.0901440 CrossRefGoogle Scholar
  69. Wilker EH, Alexeeff SE, Suh H, Vokonas PS, Baccarelli A, Schwartz J (2011) Ambient pollutants, polymorphisms associated with microRNA processing and adhesion molecules: the normative aging study. Environ Health 10:45.  https://doi.org/10.1186/1476-069X-10-45 CrossRefGoogle Scholar
  70. Wittkopp S, Staimer N, Tjoa T, Gillen D, Daher N, Shafer M, Schauer JJ, Sioutas C, Delfino RJ (2013) Mitochondrial genetic background modifies the relationship between traffic-related air pollution exposure and systemic biomarkers of inflammation. PLoS One 8:e64444.  https://doi.org/10.1371/journal.pone.0064444 CrossRefGoogle Scholar
  71. Wong MY, Day NE, Luan JA, Chan KP, Wareham NJ (2003) The detection of gene–environment interaction for continuous traits: should we deal with measurement error by bigger studies or better measurement? Int J Epidemiol 32:51–57.  https://doi.org/10.1093/ije/dyg002 CrossRefGoogle Scholar
  72. Zanobetti A, Baccarelli A, Schwartz J (2011) Gene-air pollution interaction and cardiovascular disease: a review. Prog Cardiovasc Dis 53:344–352.  https://doi.org/10.1016/j.pcad.2011.01.001 CrossRefGoogle Scholar
  73. Zhang Y, Schöttker B, Florath I, Stock C, Butterbach K, Holleczek B, Mons U, Brenner H (2016) Smoking-associated DNA methylation biomarkers and their predictive value for all-cause and cardiovascular mortality. Environ Health Perspect 124:67–74.  https://doi.org/10.1289/ehp.1409020 CrossRefGoogle Scholar
  74. Zuk O, Hechter E, Sunyaev SR, Lander ES (2012) The mystery of missing heritability: genetic interactions create phantom heritability. Proc Natl Acad Sci 109:1193–1198.  https://doi.org/10.1073/pnas.1119675109 CrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019

Authors and Affiliations

  1. 1.National Health and Environmental Effects Research LaboratoryUS Environmental Protection AgencyChapel HillUSA

Personalised recommendations