Human Genetics

, Volume 137, Issue 11–12, pp 961–970 | Cite as

Chromosome 18 gene dosage map 2.0

  • Jannine D. CodyEmail author
  • Patricia Heard
  • David Rupert
  • Minire Hasi-Zogaj
  • Annice Hill
  • Courtney Sebold
  • Daniel E. Hale
Original Investigation


In 2009, we described the first generation of the chromosome 18 gene dosage maps. This tool included the annotation of each gene as well as each phenotype associated region. The goal of these annotated genetic maps is to provide clinicians with a tool to appreciate the potential clinical impact of a chromosome 18 deletion or duplication. These maps are continually updated with the most recent and relevant data regarding chromosome 18. Over the course of the past decade, there have also been advances in our understanding of the molecular mechanisms underpinning genetic disease. Therefore, we have updated the maps to more accurately reflect this knowledge. Our Gene Dosage Map 2.0 has expanded from the gene and phenotype maps to also include a pair of maps specific to hemizygosity and suprazygosity. Moreover, we have revamped our classification from mechanistic definitions (e.g., haplosufficient, haploinsufficient) to clinically oriented classifications (e.g., risk factor, conditional, low penetrance, causal). This creates a map with gradient of classifications that more accurately represents the spectrum between the two poles of pathogenic and benign. While the data included in this manuscript are specific to chromosome 18, they may serve as a clinically relevant model that can be applied to the rest of the genome.



The authors wish to thank the many families who have actively participated in this evolving longitudinal study; many for over 20 years. Support for this work came from the Chromosome 18 Registry and Research Society.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

439_2018_1960_MOESM1_ESM.pdf (23 kb)
Supplementary material 1 (PDF 22 KB)


  1. Balboa-Beltrán E, Duran G, Lamas MJ, Carracedo A, Barros F (2015) Long survival and severe toxicity under 5-fluorouracil-based therapy in a patient with colorectal cancer who harbors a germline codon-stop mutation in TYMS. Mayo Clin Proc 90(9):1298–1303CrossRefGoogle Scholar
  2. Carter E, Heard P, Hasi M, Soileau B, Sebold C, Hale DE, Cody JD (2015) Ring 18 molecular assessment and clinical consequences. Am J Med Genet A 167A(1):54–63CrossRefGoogle Scholar
  3. Cody JD, Reveles XT, Hale DE, Lehman D, Coon H, Leach RJ (1999) Haplosufficiency of the melancortin-4 receptor gene in individuals with deletions of 18q. Hum Genet 105(5):424–427CrossRefGoogle Scholar
  4. Cody JD, Sebold C, Malik A, Heard P, Carter E, Crandall A et al (2007) Recurrent interstitial deletionsof proximal 18q: a new syndrome involving expressive speech delay. Am J Med Genet A 143A:1181–1190CrossRefGoogle Scholar
  5. Cody JD, Carter EM, Sebold C, Heard PL, Hale DE (2009a) A gene dosage map of Chromosome 18: a map with clinical utility. Genet Med 11(11):778–782CrossRefGoogle Scholar
  6. Cody JD, Heard PL, Crandall AC, Carter EM, Li J, Hardies LJ et al (2009b) Narrowing critical regions and determining penetrance for selected 18q– phenotypes. Am J Med Genet 149A:1421–1430CrossRefGoogle Scholar
  7. Cody JD, Hasi M, Soileau B, Heard P, Carter E, Sebold C, O’Donnell L, Perry B, Stratton RF, Hale DE (2014) Establishing a reference group for distal 18q-: clinical description and molecular basis. Hum Genet 133(2):199–209CrossRefGoogle Scholar
  8. Cody JD, Sebold C, Heard P, Carter E, Soileau B, Hasi-Zogaj M et al (2015) Consequences of chromsome18q deletions. Am J Med Genet C Semin Med Genet 169(3):265–280CrossRefGoogle Scholar
  9. Feenstra I, Vissers LELM, Pennings RJE, Nillessen W, Pfundt R, Kunst HP et al (2011) Disruption of teashirt zinc finger homeobox 1 is associated with congenital aural atresia in humans. Am J Hum Genet 89:813–819CrossRefGoogle Scholar
  10. Govaerts C, Srinivasan S, Shapiro A, Zhang S, Picard F, Clement K (2005) Obesity-associated mutations in the melanocortin 4 receptor provide novel insights into its function. Peptides 26(10):1909–1919CrossRefGoogle Scholar
  11. Hasi-Zogaj M, Sebold C, Heard P, Carter E, Soileau B, Hill A, Rupert D, Perry B, Atkinson S, O’Donnell L, Gelfond J, Lancaster J, Fox PT, Hale DE, Cody JD (2015) A review of 18p deletions. Am J Me Genet C Semin Med Genet 169(3):251–264CrossRefGoogle Scholar
  12. Heard PL, Carter E, Crandall AC, Sebold C, Hale DE, Cody JD (2009) High resolution genomic analysis of 18q– using oligo-microarray comparative genomic hybridization (aCGH). Am J Med Genet 149A:1431–1437CrossRefGoogle Scholar
  13. Hoischen A, van Bon BWM, Gilissen C, Arts P, van Lier B, Steehouwer M et al (2010) De novo mutations of SETBP1 cause Schinzel-Giedion syndrome. Nat Genet 42:483–485CrossRefGoogle Scholar
  14. Jiang T, Li Y, Layton AT, Wang W, Sun Y, Li M, Zhou H, Yang B (2017) Generation and phenotypic analysis of mice lacking all urea transporters. Kidney Int 91(2):338–351CrossRefGoogle Scholar
  15. Kambouris M, Maroun RC, Ben-Omran T, Al-Sarraj Y, Errafii K, Ali R, Boulos H, Curmi PA, El-Shanti H (2014) Mutations in zinc finger 407 [ZNF407] cause a unique autosomal recessive cognitive impairment syndrome. Orphanet J Rare Dis 9:80CrossRefGoogle Scholar
  16. Kearney HM, Thorland EC, Brown KK, Quintero-Rivera F, South S, Working Group of the American College of Medical Genetics Laboratory Quality Assurance Committee (2011) American College of Medical Genetics standards and guidelines for interpretation and reporting of postnatal constitutional copy number variants. Genet Med 13(7):680–685CrossRefGoogle Scholar
  17. Kuechler A, Czeschik JC, Graf E, Grasshoff U, Hüffmeier U, Busa T et al (2017) Bainbridge-Ropers syndrome caused by loss-of-function variants in ASXL3: a recognizable condition. Eur J Hum Genet 25(2):183–191CrossRefGoogle Scholar
  18. MacDonald JR, Zima R, Yuen RK, Feuk L, Scherer SW (2014) The database of genomic variants: a curated collection of structural variation in the human genome. Nucleic Acids Res 42(Database issue):D986–D992CrossRefGoogle Scholar
  19. Nguyen DQ, Webber C, Ponting CP (2006) Bias of selection on human copy-number variants. PLoS Genet 2:e20. CrossRefPubMedPubMedCentralGoogle Scholar
  20. O’Donnell L, Soileau BT, Sebold C, Gelfond J, Hale DE, Cody JD (2015) Tetrasomy 18p: report of cognitive and behavioral characteristics. Am J Med Genet A 167(7):1474–1482CrossRefGoogle Scholar
  21. Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, Regan R et al (2010) Functional impact of global rare copy number variation in autism spectrum disorders. Nature 15(7304):466 368 – 72.Google Scholar
  22. Ren CM, Liang Y, Wei F, Zhang YN, Zhong SQ, Gu H, Dong XS, Huang YY, Ke H, Son XM, Tang D, Chen Z (2013) Balanced translocation t(3;18)(p13;q22.3) and points mutation in the ZNF407 gene detected in patients with both moderate non-syndromic intellectual disability and autism. Biochim Biophys Acta 1832(3):431–438CrossRefGoogle Scholar
  23. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, Voelkerding K, Rehm HL, ACMG Laboratory Quality Assurance Committee (2015 May) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17(5):405–424. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Rosenfeld JA, Ballif BC, Martin DM, Aylsworth AS, Bejjani BA, Torchia BS et al (2010) Clinical characterization if individuals with deletions of genes in holoprosencephaly pathways by aCGH refines the phenotypic spectrum of HPE. Hum Genet 127:421–440CrossRefGoogle Scholar
  25. Ruderfer DM, Hamamsy T, Lek M, Karczewski KJ, Kavanagh D, Samocha KE, Exome Aggregation Consortium, Daly MJ, MacArthur DG, Fromer M, Purcell SM (2016) Patterns of genic intolerance of rare copy number variation in 59,898 human exomes. Nat Genet 48(10):1107–1111CrossRefGoogle Scholar
  26. Sebold C, Soileau B, Heard P, Carter E, O’Donnell L, Hale DE, Cody JD (2015) Whole arm deletions of 18p: medical and developmental effects. Am J Med Genet A 167A(2):313–323CrossRefGoogle Scholar
  27. Sniekers S, Stringer S, Watanabe K, Jansen PR, Coleman JRI, Krapohl E et al (2017) Genome-wide association meta-analysis of 78,308 individuals identifies new loci and genes influencing human intelligence. Nat Genet 49(7):1107–1112CrossRefGoogle Scholar
  28. Srivastava A, Ritesh KC, Tsan YC, Liao R, Su F, Cao X, Hannibal MC, Keegan CE, Chinnaiyan AM, Martin DM, Bielas SL (2016) De novo dominant ASXL3 mutations alter H2A deubiquitination and transcription in Bainbridge-Ropers syndrome. Hum Mol Genet 25(3):597–608CrossRefGoogle Scholar
  29. Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, Huddleston J et al (2015) An integrated map of structural variation in 2,504 human genomes. Nature 526(7571):75–81CrossRefGoogle Scholar
  30. Vaisse C, Clement K, Guy-Grand B, Froguel P (1998) A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nat Genet 20(2):113–114CrossRefGoogle Scholar
  31. Wieczorek D, Newman WG, Wieland T, Berulava T, Kaffe M, Falkenstein D et al (2014) Compound heterozygosity of low-frequency promoter deletions and rare loss-of-function mutations in TXNL4A causes Burn-McKeown syndrome. Am J Hum Genet 95(6):698–707CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Pediatrics, The Chromosome 18 Clinical Research CenterUniversity of Texas Health Science Center at San AntonioSan AntonioUSA
  2. 2.The Chromosome 18 Registry and Research SocietySan AntonioUSA
  3. 3.Department of PediatricsPenn State Milton S. Hershey Medical CenterHersheyUSA

Personalised recommendations