Advertisement

Human Genetics

, Volume 137, Issue 11–12, pp 865–879 | Cite as

The RNA world of human ageing

  • J. C. Gomez-Verjan
  • E. R. Vazquez-Martinez
  • N. A. Rivero-Segura
  • R. H. Medina-Campos
Review

Abstract

Ageing is one of the most complex processes in nature; how could we prevent the associated biological changes and chronic diseases that string along with this process, is a challenge in healthcare around the world. Recent advances in next-generation sequencing have reached a stage where it is possible to know from a specific tissue the most abundant transcripts, alternative splicing process and, non-coding RNA molecules (microRNA’s, long non-coding RNA’s, and circular RNAs). Moreover, our knowledge of several biological processes related to ageing such as senescence and autophagy have dramatically increased in the last years. In the present review, we attempt to summarise the latest scientific advances from the most critical studies performed in human clinical samples, specific to the RNA studies about ageing. Overall, human transcriptomics research indicates that although there are common alterations of the regular expression patterns of the energetic and oxidative metabolism, extracellular matrix regulation and inflammation pathways, ageing seems to be gender and tissue-specific in general. Additionally, there is an age-related implication in several numbers of impaired events on the normal alternative splicing process. On the other hand, there is a direct relation of several non-coding RNA molecules with age-related changes which indicates its possible use as biomarkers for diagnostics and therapeutically purposes. Together, these findings highlight the importance to continue focusing research on RNA studies to improve our knowledge in the pathophysiology of age-related diseases.

Notes

Acknowledgments

Dr. Nadia Alejandra Rivero Segura was supported by a postdoctoral fellowship by DGAPA-UNAM.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary material

439_2018_1955_MOESM1_ESM.docx (12 kb)
Supplementary material 1 (DOCX 11 KB)

References

  1. Abdelmohsen K, Panda AC, De S et al (2015) Circular RNAs in monkey muscle: age-dependent changes. Ageing 7:903–910Google Scholar
  2. Anisimov SV, Boheler KR (2003) Aging-associated changes in cardiac gene expression: large-scale transcriptome analysis. Adv Gerontol 11:67–75PubMedGoogle Scholar
  3. Aramillo Irizar P, Irizar PA, Schäuble S et al (2018) Transcriptomic alterations during ageing reflect the shift from cancer to degenerative diseases in the elderly. Nat Commun.  https://doi.org/10.1038/s41467-017-02395-2 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Arda HE, Li L, Tsai J et al (2016) Age-dependent pancreatic gene regulation reveals mechanisms governing human β cell function. Cell Metab 23:909–920PubMedPubMedCentralGoogle Scholar
  5. Austad SN (2016) The geroscience hypothesis: is it possible to change the rate of aging? In: Sierra F, Kohanski R (eds) Advances in geroscience. Springer, Cham, pp 1–36Google Scholar
  6. Balzano F, Deiana M, Dei Giudici S et al (2017) MicroRNA expression analysis of centenarians and rheumatoid arthritis patients reveals a common expression pattern. Int J Med Sci 14:622–628PubMedPubMedCentralGoogle Scholar
  7. Bandiera S, Rüberg S, Girard M et al (2011) Nuclear outsourcing of RNA interference components to human mitochondria. PLoS One 6:e20746PubMedPubMedCentralGoogle Scholar
  8. Barnes PJ (2017) Senescence in COPD and its comorbidities. Annu Rev Physiol 79:517–539PubMedGoogle Scholar
  9. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297Google Scholar
  10. Boon RA, Iekushi K, Lechner S et al (2013) MicroRNA-34a regulates cardiac ageing and function. Nature 495:107–110PubMedGoogle Scholar
  11. Booth LN, Brunet A (2016) The aging epigenome. Mol Cell 62:728–744PubMedPubMedCentralGoogle Scholar
  12. Borgdorff V, Lleonart ME, Bishop CL et al (2010) Multiple microRNAs rescue from Ras-induced senescence by inhibiting p21Waf1/Cip1. Oncogene 29:2262–2271PubMedGoogle Scholar
  13. Borras C, Ingles M, Mas C, Viña J (2017) Centenarians transcriptome is unique and reveals a role of BCL-XL in successful aging. Innov Aging 1:859–859Google Scholar
  14. Braunschweig U, Barbosa-Morais NL, Pan Q et al (2014) Widespread intron retention in mammals functionally tunes transcriptomes. Genome Res 24:1774–1786PubMedPubMedCentralGoogle Scholar
  15. Brown DM, Goljanek-Whysall K (2015) microRNAs: modulators of the underlying pathophysiology of sarcopenia? Ageing Res Rev 24:263–273PubMedGoogle Scholar
  16. Campos-Melo D, Droppelmann CA, Volkening K, Strong MJ (2014) RNA-binding proteins as molecular links between cancer and neurodegeneration. Biogerontology 15:587–610PubMedGoogle Scholar
  17. Cao J-N, Agrawal A, Sharman E et al (2014) Alterations in gene array patterns in dendritic cells from aged humans. PLoS One 9:e106471PubMedPubMedCentralGoogle Scholar
  18. Capri M, Olivieri F, Lanzarini C et al (2017) Identification of miR-31-5p, miR-141-3p, miR-200c-3p, and GLT1 as human liver ageing markers sensitive to donor-recipient age-mismatch in transplants. Ageing Cell 16:262–272Google Scholar
  19. Cardoso AL, Fernandes A, Aguilar-Pimentel JA et al (2018) Towards frailty biomarkers: candidates from genes and pathways regulated in ageing and age-related diseases. Ageing Res Rev 47:214–277PubMedGoogle Scholar
  20. Chan SY, Zhang Y-Y, Hemann C et al (2009) MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins ISCU1/2. Cell Metab 10:273–284PubMedPubMedCentralGoogle Scholar
  21. Chang ALS, Bitter PH Jr, Qu K et al (2013) Rejuvenation of gene expression pattern of aged human skin by broadband light treatment: a pilot study. J Investig Dermatol 133:394–402PubMedGoogle Scholar
  22. Chen L-L, Yang L (2015) Regulation of circRNA biogenesis. RNA Biol 12:381–388PubMedPubMedCentralGoogle Scholar
  23. Cheng J, Huang J, Yuan S et al (2017) Circular RNA expression profiling of human granulosa cells during maternal ageing reveals novel transcripts associated with assisted reproductive technology outcomes. PLoS One 12:e0177888PubMedPubMedCentralGoogle Scholar
  24. Cho BA, Yoo S-K, Seo J-S (2018) Signatures of photo-aging and intrinsic aging in skin were revealed by transcriptome network analysis. Aging 10:1609–1626PubMedPubMedCentralGoogle Scholar
  25. Choi SW, Lee JY, Kang K-S (2017) miRNAs in stem cell ageing and age-related disease. Mech Ageing Dev 168:20–29PubMedGoogle Scholar
  26. Cortés-López M, Miura P (2016) Emerging functions of circular RNAs. Yale J Biol Med 89:527–537PubMedPubMedCentralGoogle Scholar
  27. Crocco P, Montesanto A, Passarino G, Rose G (2016) Polymorphisms falling within putative miRNA target sites in the 3′UTR region of SIRT2 and DRD2 genes are correlated with human longevity. J Gerontol A Biol Sci Med Sci 71:586–592PubMedGoogle Scholar
  28. Danka Mohammed CP, Mohammed CPD, Park JS et al (2017) MicroRNAs in brain aging. Mech Ageing Dev 168:3–9PubMedGoogle Scholar
  29. Derrien T, Johnson R, Bussotti G et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22:1775–1789PubMedPubMedCentralGoogle Scholar
  30. Deschênes M, Chabot B (2017) The emerging role of alternative splicing in senescence and aging. Aging Cell 16:918–933PubMedPubMedCentralGoogle Scholar
  31. Dinami R, Ercolani C, Petti E et al (2014) miR-155 drives telomere fragility in human breast cancer by targeting TRF1. Cancer Res 74:4145–4156PubMedGoogle Scholar
  32. Dlamini Z, Tshidino SC, Hull R (2015) Abnormalities in alternative splicing of apoptotic genes and cardiovascular diseases. Int J Mol Sci 16:27171–27190PubMedPubMedCentralGoogle Scholar
  33. Dönertaş HM, İzgi H, Kamacıoğlu A et al (2017) Gene expression reversal toward pre-adult levels in the aging human brain and age-related loss of cellular identity. Sci Rep 7:5894PubMedPubMedCentralGoogle Scholar
  34. Dugo M, Cotroneo CE, Lavoie-Charland E et al (2016) Human lung tissue transcriptome: influence of sex and age. PLoS One 11:e0167460PubMedPubMedCentralGoogle Scholar
  35. ElSharawy A, Keller A, Flachsbart F et al (2012) Genome-wide miRNA signatures of human longevity. Aging Cell 11:607–616PubMedGoogle Scholar
  36. Enge M, Arda HE, Mignardi M et al (2017) Single-cell analysis of human pancreas reveals transcriptional signatures of aging and somatic mutation patterns. Cell 171:321–330.e14PubMedPubMedCentralGoogle Scholar
  37. Farr JN, Roforth MM, Fujita K et al (2015) Effects of age and estrogen on skeletal gene expression in humans as assessed by RNA sequencing. PLoS One 10:e0138347PubMedPubMedCentralGoogle Scholar
  38. Fernández-Miranda G, Méndez R (2012) The CPEB-family of proteins, translational control in senescence and cancer. Ageing Res Rev 11:460–472PubMedGoogle Scholar
  39. Fu VX, Dobosy JR, Desotelle JA et al (2008) Aging and cancer-related loss of insulin-like growth factor 2 imprinting in the mouse and human prostate. Cancer Res 68:6797–6802PubMedPubMedCentralGoogle Scholar
  40. Fujita K, Mondal AM, Horikawa I et al (2009) p53 isoforms ∆133p53 and p53β are endogenous regulators of replicative cellular senescence. Nat Cell Biol 11:1135–1142PubMedPubMedCentralGoogle Scholar
  41. Gallego-Paez LM, Bordone MC, Leote AC et al (2017) Alternative splicing: the pledge, the turn, and the prestige: the key role of alternative splicing in human biological systems. Hum Genet 136:1015–1042PubMedPubMedCentralGoogle Scholar
  42. Geng Z, Wang J, Pan L et al (2017) Microarray analysis of differential gene expression profile between human fetal and adult heart. Pediatr Cardiol 38:700–706PubMedGoogle Scholar
  43. Gheorghe M, Snoeck M, Emmerich M et al (2014) Major aging-associated RNA expressions change at two distinct age-positions. BMC Genom 15:132Google Scholar
  44. Glass D, Viñuela A, Davies MN et al (2013) Gene expression changes with age in skin, adipose tissue, blood and brain. Genome Biol 14:R75PubMedPubMedCentralGoogle Scholar
  45. Glisovic T, Bachorik JL, Yong J, Dreyfuss G (2008) RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett 582:1977–1986PubMedPubMedCentralGoogle Scholar
  46. Grammatikakis I, Panda AC, Abdelmohsen K, Gorospe M (2014) Long noncoding RNAs(lncRNAs) and the molecular hallmarks of aging. Aging 6:992–1009PubMedPubMedCentralGoogle Scholar
  47. Guo Y, Li P, Gao L et al (2017) Kallistatin reduces vascular senescence and aging by regulating microRNA-34a-SIRT1 pathway. Aging Cell 16:837–846PubMedPubMedCentralGoogle Scholar
  48. Hackl M, Brunner S, Fortschegger K et al (2010) miR-17, miR-19b, miR-20a, and miR-106a are down-regulated in human aging. Aging Cell 9:291–296PubMedPubMedCentralGoogle Scholar
  49. Hadar A, Milanesi E, Walczak M et al (2018) SIRT1, miR-132 and miR-212 link human longevity to Alzheimer’s disease. Sci Rep.  https://doi.org/10.1038/s41598-018-26547-6 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Hangelbroek RWJ, Fazelzadeh P, Tieland M et al (2016) Expression of protocadherin gamma in skeletal muscle tissue is associated with age and muscle weakness. J Cachexia Sarcopenia Muscle 7:604–614PubMedPubMedCentralGoogle Scholar
  51. Haustead DJ, Stevenson A, Saxena V et al (2016) Transcriptome analysis of human ageing in male skin shows mid-life period of variability and central role of NF-κB. Sci Rep 6:26846PubMedPubMedCentralGoogle Scholar
  52. Hekmatimoghaddam S, Dehghani Firoozabadi A, Zare-Khormizi MR, Pourrajab F (2017) Sirt1 and Parp1 as epigenome safeguards and microRNAs as SASP-associated signals, in cellular senescence and aging. Ageing Res Rev 40:120–141PubMedGoogle Scholar
  53. Holdt LM, Stahringer A, Sass K et al (2016) Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat Commun 7:12429PubMedPubMedCentralGoogle Scholar
  54. Holly AC, Melzer D, Pilling LC et al (2013) Changes in splicing factor expression are associated with advancing age in man. Mech Ageing Dev 134:356–366PubMedPubMedCentralGoogle Scholar
  55. Hong MG, Myers AJ, Magnusson PKE, Prince JA (2008) Transcriptome-wide assessment of human brain and lymphocyte senescence. PLoS One 3:e3024PubMedPubMedCentralGoogle Scholar
  56. Hooten NN, Fitzpatrick M, Wood WH et al (2013) Age-related changes in microRNA levels in serum. Aging 5:725–740PubMedCentralGoogle Scholar
  57. Huh CJ, Zhang B, Victor MB et al (2016) Maintenance of age in human neurons generated by microRNA-based neuronal conversion of fibroblasts. Elife.  https://doi.org/10.7554/eLife.18648 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Iwakawa H-O, Tomari Y (2015) The functions of microRNAs: mRNA decay and translational repression. Trends Cell Biol 25:651–665PubMedGoogle Scholar
  59. Jain S, Thakkar N, Chhatai J et al (2017) Long non-coding RNA: functional agent for disease traits. RNA Biol 14:522–535PubMedGoogle Scholar
  60. Kang HJ, Kawasawa YI, Cheng F et al (2011) Spatio-temporal transcriptome of the human brain. Nature 478:483–489PubMedPubMedCentralGoogle Scholar
  61. Kennedy BK, Berger SL, Brunet A et al (2014) Geroscience: linking aging to chronic disease. Cell 159:709–713PubMedPubMedCentralGoogle Scholar
  62. Kent JW Jr, Göring HHH, Charlesworth JC et al (2012) Genotype × age interaction in human transcriptional ageing. Mech Ageing Dev 133:581–590PubMedPubMedCentralGoogle Scholar
  63. Knupp D, Miura P (2018) CircRNA accumulation: a new hallmark of aging? Mech Ageing Dev 173:71–79PubMedGoogle Scholar
  64. Kochunov P, Charlesworth J, Winkler A et al (2013) Transcriptomics of cortical gray matter thickness decline during normal aging. Neuroimage 82:273–283PubMedGoogle Scholar
  65. Kumar S, Vijayan M, Bhatti JS, Reddy PH (2017) MicroRNAs as peripheral biomarkers in aging and age-related diseases. Prog Mol Biol Transl Sci 146:47–94PubMedGoogle Scholar
  66. Lafferty-Whyte K, Cairney CJ, Jamieson NB et al (2009) Pathway analysis of senescence-associated miRNA targets reveals common processes to different senescence induction mechanisms. Biochim Biophys Acta 1792:341–352PubMedGoogle Scholar
  67. Latorre E, Harries LW (2017) Splicing regulatory factors, ageing and age-related disease. Ageing Res Rev 36:165–170PubMedGoogle Scholar
  68. Lauri A, Pompilio G, Capogrossi MC (2014) The mitochondrial genome in aging and senescence. Ageing Res Rev 18:1–15PubMedGoogle Scholar
  69. Lee BP, Pilling LC, Emond F et al (2016) Changes in the expression of splicing factor transcripts and variations in alternative splicing are associated with lifespan in mice and humans. Aging Cell 15:903–913PubMedPubMedCentralGoogle Scholar
  70. Lei L, Zeng Q, Lu J et al (2017) MALAT1 participates in ultraviolet B-induced photo-aging via regulation of the ERK/MAPK signaling pathway. Mol Med Rep 15:3977–3982PubMedPubMedCentralGoogle Scholar
  71. Lin X, Zhan J-K, Wang Y-J et al (2016) Function, role, and clinical application of microRNAs in vascular aging. Biomed Res Int 2016:6021394PubMedPubMedCentralGoogle Scholar
  72. Lin H, Lunetta KL, Zhao Q et al (2017) Transcriptome-wide association study of inflammatory biologic age. Aging 9:2288–2301PubMedPubMedCentralGoogle Scholar
  73. Liu EY, Cali CP, Lee EB (2017) RNA metabolism in neurodegenerative disease. Dis Model Mech 10:509–518PubMedPubMedCentralGoogle Scholar
  74. Loerch PM, Lu T, Dakin KA et al (2008) Evolution of the aging brain transcriptome and synaptic regulation. PLoS One 3:e3329PubMedPubMedCentralGoogle Scholar
  75. Lopez-Mejia IC, Vautrot V, De Toledo M et al (2011) A conserved splicing mechanism of the LMNA gene controls premature aging. Hum Mol Genet 20:4540–4555PubMedGoogle Scholar
  76. López-Otín C, Blasco MA, Partridge L et al (2013) The hallmarks of aging. Cell 153:1194–1217PubMedPubMedCentralGoogle Scholar
  77. Lukiw WJ (2013) Circular RNA (circRNA) in Alzheimer’s disease (AD). Front Genet 4:307PubMedPubMedCentralGoogle Scholar
  78. Luo Q, Chen Y (2016) Long noncoding RNAs and Alzheimer’s disease. Clin Interv Aging 11:867–872PubMedPubMedCentralGoogle Scholar
  79. Marini F, Cianferotti L, Brandi ML (2016) Epigenetic mechanisms in bone biology and osteoporosis: can they drive therapeutic choices? Int J Mol Sci.  https://doi.org/10.3390/ijms17081329 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Marttila S, Jylhävä J, Nevalainen T et al (2013) Transcriptional analysis reveals gender-specific changes in the aging of the human immune system. PLoS One 8:e66229PubMedPubMedCentralGoogle Scholar
  81. Maziuk B, Ballance HI, Wolozin B (2017) Dysregulation of RNA binding protein aggregation in neurodegenerative disorders. Front Mol Neurosci 10:89PubMedPubMedCentralGoogle Scholar
  82. McGuinness D, Mohammed S, Monaghan L et al (2018) A molecular signature for delayed graft function. Aging Cell 17:e12825PubMedPubMedCentralGoogle Scholar
  83. Meiners S, Eickelberg O, Königshoff M (2015) Hallmarks of the ageing lung. Eur Respir J 45:807–827PubMedGoogle Scholar
  84. Micó V, Berninches L, Tapia J, Daimiel L (2017) NutrimiRAging: micromanaging nutrient sensing pathways through nutrition to promote healthy aging. Int J Mol Sci.  https://doi.org/10.3390/ijms18050915 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Nakamura S, Kawai K, Takeshita Y et al (2012) Identification of blood biomarkers of aging by transcript profiling of whole blood. Biochem Biophys Res Commun 418:313–318PubMedGoogle Scholar
  86. Neault M, Couteau F, Bonneau É, De Guire V, Mallette FA (2017) Molecular regulation of cellular senescence by microRNAs: implications in cancer and age-related diseases. Int Rev Cell Mol Biol 334:27–98PubMedGoogle Scholar
  87. Okada M, Kim HW, Matsu-ura K et al (2016) Abrogation of age-induced microRNA-195 rejuvenates the senescent mesenchymal stem cells by reactivating telomerase. Stem Cells 34:148–159PubMedGoogle Scholar
  88. Olivieri F, Albertini MC, Orciani M et al (2015) DNA damage response (DDR) and senescence: shuttled inflamma-miRNAs on the stage of inflamm-aging. Oncotarget 6:35509–35521PubMedPubMedCentralGoogle Scholar
  89. Pehar M, Ko MH, Li M et al (2014) P44, the “longevity-assurance” isoform of P53, regulates tau phosphorylation and is activated in an age-dependent fashion. Aging Cell 13:449–456PubMedPubMedCentralGoogle Scholar
  90. Peng Y, Song X, Zheng Y et al (2017) Circular RNA profiling reveals that circCOL3A1-859267 regulate type I collagen expression in photoaged human dermal fibroblasts. Biochem Biophys Res Commun 486:277–284PubMedGoogle Scholar
  91. Peters MJ, Joehanes R, Pilling LC et al (2015) The transcriptional landscape of age in human peripheral blood. Nat Commun 6:8570PubMedPubMedCentralGoogle Scholar
  92. Pilling LC, Joehanes R, Melzer D et al (2015) Gene expression markers of age-related inflammation in two human cohorts. Exp Gerontol 70:37–45PubMedPubMedCentralGoogle Scholar
  93. Pourrajab F, Vakili Zarch A, Hekmatimoghaddam S, Zare-Khormizi MR (2015) The master switchers in the aging of cardiovascular system, reverse senescence by microRNA signatures; as highly conserved molecules. Prog Biophys Mol Biol 119:111–128PubMedGoogle Scholar
  94. Qin R, Zhou J, Chen C et al (2014) LIN28 is involved in glioma carcinogenesis and predicts outcomes of glioblastoma multiforme patients. PLoS One 9:e86446PubMedPubMedCentralGoogle Scholar
  95. Rani A, O’Shea A, Ianov L et al (2017) miRNA in circulating microvesicles as biomarkers for age-related cognitive decline. Front Aging Neurosci 9:323PubMedPubMedCentralGoogle Scholar
  96. Reddy PH, Tonk S, Kumar S et al (2017a) A critical evaluation of neuroprotective and neurodegenerative MicroRNAs in Alzheimer’s disease. Biochem Biophys Res Commun 483:1156–1165PubMedGoogle Scholar
  97. Reddy PH, Williams J, Smith F et al (2017b) MicroRNAs, aging, cellular senescence, and Alzheimer’s disease. Prog Mol Biol Transl Sci 146:127–171PubMedGoogle Scholar
  98. Reynolds LM, Ding J, Taylor JR et al (2015) Transcriptomic profiles of aging in purified human immune cells. BMC Genom 16:333Google Scholar
  99. Rippo MR, Olivieri F, Monsurrò V et al (2014) MitomiRs in human inflamm-aging: a hypothesis involving miR-181a, miR-34a and miR-146a. Exp Gerontol 56:154–163PubMedGoogle Scholar
  100. Rizzacasa B, Morini E, Pucci S et al (2017) LOX-1 and its splice variants: a new challenge for atherosclerosis and cancer-targeted therapies. Int J Mol Sci.  https://doi.org/10.3390/ijms18020290 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Rodríguez SA, Grochová D, McKenna T et al (2016) Global genome splicing analysis reveals an increased number of alternatively spliced genes with aging. Aging Cell 15:267–278PubMedGoogle Scholar
  102. Rodwell GEJ, Sonu R, Zahn JM et al (2004) A transcriptional profile of aging in the human kidney. PLoS Biol 2:e427PubMedPubMedCentralGoogle Scholar
  103. Rybak-Wolf A, Stottmeister C, Glažar P et al (2015) Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 58:870–885PubMedGoogle Scholar
  104. Salzman J, Gawad C, Wang PL et al (2012) Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 7:e30733PubMedPubMedCentralGoogle Scholar
  105. Sataranatarajan K, Feliers D, Mariappan MM et al (2012) Molecular events in matrix protein metabolism in the aging kidney. Aging Cell 11:1065–1073PubMedPubMedCentralGoogle Scholar
  106. Smith-Vikos T, Liu Z, Parsons C et al (2016) A serum miRNA profile of human longevity: findings from the Baltimore Longitudinal Study of Aging (BLSA). Aging 8:2971–2987PubMedPubMedCentralGoogle Scholar
  107. Tan L, Yu J-T, Liu Q-Y et al (2014) Circulating miR-125b as a biomarker of Alzheimer’s disease. J Neurol Sci 336:52–56PubMedGoogle Scholar
  108. Thum T, Gross C, Fiedler J et al (2008) MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456:980–984PubMedGoogle Scholar
  109. Tollervey JR, Wang Z, Hortobagyi T et al (2011) Analysis of alternative splicing associated with aging and neurodegeneration in the human brain. Genome Res 21:1572–1582PubMedPubMedCentralGoogle Scholar
  110. Toutfaire M, Bauwens E, Debacq-Chainiaux F (2017) The impact of cellular senescence in skin ageing: a notion of mosaic and therapeutic strategies. Biochem Pharmacol 142:1–12PubMedGoogle Scholar
  111. Ulitsky I, Bartel DP (2013) lincRNAs: genomics, evolution, and mechanisms. Cell 154:26–46PubMedPubMedCentralGoogle Scholar
  112. van den Akker EB, Passtoors WM, Jansen R et al (2014) Meta-analysis on blood transcriptomic studies identifies consistently coexpressed protein–protein interaction modules as robust markers of human aging. Aging Cell 13:216–225PubMedGoogle Scholar
  113. Victoria B, Nunez Lopez YO, Masternak MM (2017) MicroRNAs and the metabolic hallmarks of aging. Mol Cell Endocrinol 455:131–147PubMedPubMedCentralGoogle Scholar
  114. Voutetakis K, Chatziioannou A, Gonos ES, Trougakos IP (2015) Comparative meta-analysis of transcriptomics data during cellular senescence and in vivo tissue ageing. Oxid Med Cell Longev 2015:732914PubMedPubMedCentralGoogle Scholar
  115. Wang Y, Liu J, Huang BO et al (2015) Mechanism of alternative splicing and its regulation. Biomed Rep 3:152–158PubMedGoogle Scholar
  116. Wu C-L, Wang Y, Jin B et al (2015) Senescence-associated long non-coding RNA (SALNR) delays oncogene-induced senescence through NF90 regulation. J Biol Chem 290:30175–30192PubMedPubMedCentralGoogle Scholar
  117. Xu X, Chen W, Miao R et al (2015) miR-34a induces cellular senescence via modulation of telomerase activity in human hepatocellular carcinoma by targeting FoxM1/c-Myc pathway. Oncotarget 6:3988–4004PubMedPubMedCentralGoogle Scholar
  118. Yan W, Zhang L-L, Yan L et al (2013) Transcriptome analysis of skin photoaging in Chinese females reveals the involvement of skin homeostasis and metabolic changes. PLoS One 8:e61946PubMedPubMedCentralGoogle Scholar
  119. Yang J, Huang T, Petralia F et al (2015) Synchronized age-related gene expression changes across multiple tissues in human and the link to complex diseases. Sci Rep 5:15145PubMedPubMedCentralGoogle Scholar
  120. Yang Y, Fan X, Mao M et al (2017) Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res 27:626–641PubMedPubMedCentralGoogle Scholar
  121. Yoon J-H, Abdelmohsen K, Kim J et al (2013) Scaffold function of long non-coding RNA HOTAIR in protein ubiquitination. Nat Commun 4:2939PubMedPubMedCentralGoogle Scholar
  122. Zahn JM, Sonu R, Vogel H et al (2006) Transcriptional profiling of aging in human muscle reveals a common aging signature. PLoS Genet 2:e115PubMedPubMedCentralGoogle Scholar
  123. Zhang Y, Zhang X-O, Chen T et al (2013) Circular intronic long noncoding RNAs. Mol Cell 51:792–806PubMedGoogle Scholar
  124. Zhao T, Li J, Chen AF (2010) MicroRNA-34a induces endothelial progenitor cell senescence and impedes its angiogenesis via suppressing silent information regulator 1. Am J Physiol Endocrinol Metab 299:E110–E116PubMedPubMedCentralGoogle Scholar
  125. Zhou Z, Gao M, Liu Q, Tao MDJ (2015) Comprehensive transcriptome analysis of mesenchymal stem cells in elderly patients with osteoporosis. Aging Clin Exp Res 27:595–601PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • J. C. Gomez-Verjan
    • 1
  • E. R. Vazquez-Martinez
    • 2
  • N. A. Rivero-Segura
    • 3
  • R. H. Medina-Campos
    • 4
  1. 1.División de Investigación BásicaInstituto Nacional de Geriatría (INGER)Mexico CityMexico
  2. 2.Unidad de Investigación en Reproducción HumanaInstituto Nacional de Perinatología-Facultad de Química (UNAM)Mexico CityMexico
  3. 3.División de Neurociencias, Instituto de Fisiología CelularUniversidad Nacional Autónoma de México (UNAM)Mexico CityMexico
  4. 4.Dirección de InvestigaciónInstituto Nacional de Geriatría (INGER)Mexico CityMexico

Personalised recommendations