Advertisement

Ways of improving precise knock-in by genome-editing technologies

  • Svetlana A. Smirnikhina
  • Arina A. Anuchina
  • Alexander V. Lavrov
Review
  • 304 Downloads

Abstract

Despite the recent discover of genome-editing methods, today we can say these approaches have firmly entered our life. Two approaches—knocking out malfunctioning gene allele or correcting the mutation with precise knock-in—can be used in hereditary monogenic diseases treatment. The latter approach is relatively ineffective. Modern data about the ways of repair of double-strand DNA breaks formed by nucleases are presented in this review. The main part of the review is devoted to the ways of increasing precise and effective knock-in: inhibition of non-homologous end joining and stimulation of homology-directed repair key factors, use of small molecules with unknown mechanism of action, cell-cycle synchronization and cell-cycle-dependent activity of Cas9, donor molecule design, selection, alternative methods for insertion and other approaches.

Notes

Acknowledgements

The section “Knock-in enhancement” was supported by the grant of the Russian Science Foundation (Agreement 17-75-20095), and the sections “DNA repair pathways” was supported by the Russian Academy of Sciences (Program “Fundamental researches for biomedical technologies”) and the state assignment of FASO Russia.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Aparicio T, Baer R, Gautier J (2014) DNA double-strand break repair pathway choice and cancer. DNA Repair 19:169–175.  https://doi.org/10.1016/j.dnarep.2014.03.014 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Audebert M, Salles B, Calsou P (2008) Effect of double-strand break DNA sequence on the PARP-1 NHEJ pathway. Biochem Biophys Res Commun 369(3):982–988CrossRefGoogle Scholar
  3. Auer TO, Duroure K, De Cian A, Concordet JP, Del Bene F (2014) Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res 24:142–153CrossRefGoogle Scholar
  4. Azimian-Zavareh V, Hossein G, Janzamin E (2012) Effect of lithium chloride and antineoplastic drugs on survival and cell cycle of androgen-dependent prostate cancer LNCap cells. Indian J Pharmacol 44(6):714–721.  https://doi.org/10.4103/0253-7613.103265 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bakondi B, Lv W, Lu B, Jones MK, Tsai Y, Kim KJ, Levy R, Akhtar AA, Breunig JJ, Svendsen CN, Wang S (2016) In vivo CRISPR/Cas9 gene editing corrects retinal dystrophy in the S334ter-3 rat model of autosomal dominant retinitis pigmentosa. Mol Ther 24(3):556–563.  https://doi.org/10.1038/mt.2015.220 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Baldin V, Lukas J, Marcote MJ, Pagano M, Draetta G (1993) Cyclin D1 is a nuclear protein required for cell cycle progression in G1. Genes Dev 7:812–821CrossRefGoogle Scholar
  7. Beumer K, Bhattacharyya G, Bibikova M, Trautman JK, Carroll D (2006) Efficient gene targeting in Drosophila with zinc-finger nucleases. Genetics 172(4):2391–2403CrossRefGoogle Scholar
  8. Beumer KJ, Trautman JK, Bozas A, Liu JL, Rutter J, Gall JG, Carroll D (2008) Efficient gene targeting in Drosophila by direct embryo injection with zinc-finger nucleases. Proc Natl Acad Sci USA 105(50):19821–19826.  https://doi.org/10.1073/pnas.0810475105 CrossRefPubMedGoogle Scholar
  9. Beumer KJ, Trautman JK, Mukherjee K, Carroll D (2013) Donor DNA utilization during gene targeting with zinc-finger nucleases. G3 (Bethesda) 3(4):657–664.  https://doi.org/10.1534/g3.112.005439 CrossRefGoogle Scholar
  10. Bhargava R, Onyango DO, Stark JM (2016) Regulation of single-strand annealing and its role in genome maintenance. Trends Genet 32(9):566–575.  https://doi.org/10.1016/j.tig.2016.06.007 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bibikova M, Golic M, Golic KG, Carroll D (2002) Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161(3):1169–1175PubMedPubMedCentralGoogle Scholar
  12. Bibikova M, Beumer K, Trautman JK, Carroll D (2003) Enhancing gene targeting with designed zinc finger nucleases. Science 300(5620):764CrossRefGoogle Scholar
  13. Boersma V, Moatti N, Segura-Bayona S, Peuscher MH, van der Torre J, Wevers BA, Orthwein A, Durocher D, Jacobs JJL (2015) MAD2L2 controls DNA repair at telomeres and DNA breaks by inhibiting 5′ end resection. Nature 521(7553):537–540.  https://doi.org/10.1038/nature14216 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Borel F, Lacroix FB, Margolis RL (2002) Prolonged arrest of mammalian cells at the G1/S boundary results in permanent S phase stasis. J Cell Sci 115(Pt 14):2829–2838PubMedGoogle Scholar
  15. Botuyan MV, Lee J, Ward IM, Kim JE, Thompson JR, Chen J, Mer G (2006) Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair. Cell 127(7):1361–1373CrossRefGoogle Scholar
  16. Bozas A, Beumer KJ, Trautman JK, Carroll D (2009) Genetic analysis of zinc-finger nuclease-induced gene targeting in Drosophila. Genetics 182(3):641–651.  https://doi.org/10.1534/genetics.109.101329 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Brachman EE, Kmiec EB (2005) Gene repair in mammalian cells is stimulated by the elongation of S phase and transient stalling of replication forks. DNA Repair 4(4):445–457CrossRefGoogle Scholar
  18. Byrne SM, Ortiz L, Mali P, Aach J, Church GM (2015) Multi-kilobase homozygous targeted gene replacement in human induced pluripotent stem cells. Nucleic Acids Res 43:e21CrossRefGoogle Scholar
  19. Callen E, Di Virgilio M, Kruhlak MJ, Nieto-Soler M, Wong N, Chen HT, Faryabi RB, Polato F, Santos M, Starnes LM, Wesemann DR, Lee JE, Tubbs A, Sleckman BP, Daniel JA, Ge K, Alt FW, Fernandez-Capetillo O, Nussenzweig MC, Nussenzweig A (2013) 53BP1 mediates productive and mutagenic DNA repair through distinct phosphoprotein interactions. Cell 153(6):1266–1280.  https://doi.org/10.1016/j.cell.2013.05.023 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Ceccaldi R, Liu JC, Amunugama R, Hajdu I, Primack B, Petalcorin MI, O’Connor KW, Konstantinopoulos PA, Elledge SJ, Boulton SJ, Yusufzai T, D’Andrea AD (2015) Homologous-recombination-deficient tumours are dependent on Polθ-mediated repair. Nature 518(7538):258–262.  https://doi.org/10.1038/nature14184 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Ceccaldi R, Rondinelli B, D’Andrea AD (2016) Repair pathway choices and consequences at the double-strand break. Trends Cell Biol 26(1):52–64.  https://doi.org/10.1016/j.tcb.2015.07.009 CrossRefPubMedGoogle Scholar
  22. Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39(12):e82.  https://doi.org/10.1093/nar/gkr218 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Chan SH, Yu AM, McVey M (2010) Dual roles for DNA polymerase theta in alternative end-joining repair of double-strand breaks in Drosophila. PLoS Genet 6(7):e1001005.  https://doi.org/10.1371/journal.pgen.1001005 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Chapman JR, Barral P, Vannier JB, Borel V, Steger M, Tomas-Loba A, Sartori AA, Adams IR, Batista FD, Boulton SJ (2013) RIF1 is essential for 53BP1-dependent nonhomologous end joining and suppression of DNA double-strand break resection. Mol Cell 49(5):858–871.  https://doi.org/10.1016/j.molcel.2013.01.002 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Charpentier M, Khedher AHY, Menoret S, Brion A, Lamribet K, Dardillac E, Boix C, Perrouault L, Tesson L, Geny S, De Cian A, Itier JM, Anegon I, Lopez B, Giovannangeli C, Concordet JP (2018) CtIP fusion to Cas9 enhances transgene integration by homology-dependent repair. Nat Commun 9(1):1133.  https://doi.org/10.1038/s41467-018-03475-7 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Chen L, Trujillo K, Sung P, Tomkinson AE (2000) Interactions of the DNA ligase IV-XRCC4 complex with DNA ends and the DNA-dependent protein kinase. J Biol Chem 275(34):26196–26205CrossRefGoogle Scholar
  27. Chen X, Zhong S, Zhu X, Dziegielewska B, Ellenberger T, Wilson GM, MacKerell AD Jr, Tomkinson AE (2008) Rational design of human DNA ligase inhibitors that target cellular DNA replication and repair. Cancer Res 68(9):3169–3177.  https://doi.org/10.1158/0008-5472.CAN-07-6636 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Chen F, Pruett-Miller SM, Huang Y, Gjoka M, Duda K, Taunton J, Collingwood TN, Frodin M, Davis GD (2011) High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nat Methods 8(9):753–755.  https://doi.org/10.1038/nmeth.1653 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Chiruvella KK, Liang Z, Wilson TE (2013) Repair of double-strand breaks by end joining. Cold Spring Harb Perspect Biol 5(5):a012757.  https://doi.org/10.1101/cshperspect.a012757 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Chu VT, Weber T, Wefers B, Wurst W, Sander S, Rajewsky K, Kühn R (2015) Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol 33(5):543–548.  https://doi.org/10.1038/nbt.3198 CrossRefPubMedGoogle Scholar
  31. Cottarel J, Frit P, Bombarde O, Salles B, Négrel A, Bernard S, Jeggo PA, Lieber MR, Modesti M, Calsou P (2013) A noncatalytic function of the ligation complex during nonhomologous end joining. J Cell Biol 200(2):173–186.  https://doi.org/10.1083/jcb.201203128 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Cox DB, Platt RJ, Zhang F (2015) Therapeutic genome editing: prospects and challenges. Nat Med 21(2):121–131.  https://doi.org/10.1038/nm.3793 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Cristea S, Freyvert Y, Santiago Y, Holmes MC, Urnov FD, Gregory PD, Cost GJ (2013) In vivo cleavage of transgene donors promotes nuclease-mediated targeted integration. Biotechnol Bioeng 110(3):871–880.  https://doi.org/10.1002/bit.24733 CrossRefPubMedGoogle Scholar
  34. Davis L, Maizels N (2014) Homology-directed repair of DNA nicks via pathways distinct from canonical double-strand break repair. Proc Natl Acad Sci USA 111(10):E924–E932.  https://doi.org/10.1073/pnas.1400236111 CrossRefPubMedGoogle Scholar
  35. Deng SK, Gibb B, de Almeida MJ, Greene EC, Symington LS (2014) RPA antagonizes microhomology-mediated repair of DNA double-strand breaks. Nat Struct Mol Biol 21(4):405–412.  https://doi.org/10.1038/nsmb.2786 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Drané P, Brault ME, Cui G, Meghani K, Chaubey S, Detappe A, Parnandi N, He Y, Zheng XF, Botuyan MV, Kalousi A, Yewdell WT, Münch C, Harper JW, Chaudhuri J, Soutoglou E, Mer G, Chowdhury D (2017) TIRR regulates 53BP1 by masking its histone methyl-lysine binding function. Nature 543(7644):211–216.  https://doi.org/10.1038/nature21358 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Durisova K, Salovska B, Pejchal J, Tichy A (2016) Chemical inhibition of DNA repair kinases as a promising tool in oncology. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 160(1):11–19.  https://doi.org/10.5507/bp.2015.046 CrossRefPubMedGoogle Scholar
  38. Eisenbrand G, Hippe F, Jakobs S, Muehlbeyer S (2004) Molecular mechanisms of indirubin and its derivatives: novel anticancer molecules with their origin in traditional Chinese phytomedicine. J Cancer Res Clin Oncol 130(11):627–635CrossRefGoogle Scholar
  39. Fell VL, Schild-Poulter C (2015) The Ku heterodimer: function in DNA repair and beyond. Mutat Res Rev Mutat Res 763:15–29.  https://doi.org/10.1016/j.mrrev.2014.06.002 CrossRefPubMedGoogle Scholar
  40. Fernandez-Garcia B, Casado P, Prado MA, Ugarte-Gil LJ, Artime N, Cabal-Hierro L, Calvo E, López JA, Ramos S, Lazo PS (2010) Proteomic analysis of annexin A2 phosphorylation induced by microtubule interfering agents and kinesin spindle protein inhibitors. J Proteome Res 9(9):4649–4660.  https://doi.org/10.1021/pr100377v CrossRefPubMedGoogle Scholar
  41. Ferretti LP, Lafranchi L, Sartori AA (2013) Controlling DNA-end resection: a new task for CDKs. Front Genet 4:99.  https://doi.org/10.3389/fgene.2013.00099 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Firth AL, Menon T, Parker GS, Qualls SJ, Lewis BM, Ke E, Dargitz CT, Wright R, Khanna A, Gage FH, Verma IM (2015) Functional gene correction for cystic fibrosis in lung epithelial cells generated from patient iPSCs. Cell Rep 12(9):1385–1390.  https://doi.org/10.1016/j.celrep.2015.07.062 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Fradet-Turcotte A, Canny MD, Escribano-Díaz C, Orthwein A, Leung CC, Huang H, Landry MC, Kitevski-LeBlanc J, Noordermeer SM, Sicheri F, Durocher D (2013) 53BP1 is a reader of the DNA-damage-induced H2A Lys 15 ubiquitin mark. Nature 499(7456):50–54.  https://doi.org/10.1038/nature12318 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Gaj T, Staahl BT, Rodrigues GMC, Limsirichai P, Ekman FK, Doudna JA, Schaffer DV (2017) Targeted gene knock-in by homology-directed genome editing using Cas9 ribonucleoprotein and AAV donor delivery. Nucleic Acids Res 45(11):e98.  https://doi.org/10.1093/nar/gkx154 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Garcia V, Phelps SE, Gray S, Neale MJ (2011) Bidirectional resection of DNA double-strand breaks by Mre11 and Exo1. Nature 479(7372):241–244.  https://doi.org/10.1038/nature10515 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Gerlach M, Kraft T, Brenner B, Petersen B, Niemann H, Montag J (2018) Efficient knock-in of a point mutation in porcine fibroblasts using the CRISPR/Cas9-GMNN fusion gene. Genes (Basel).  https://doi.org/10.3390/genes9060296 CrossRefGoogle Scholar
  47. Gopalappa R, Song M, Chandrasekaran AP, Das S, Haq S, Koh HC, Ramakrishna S (2018) Efficient genome editing by FACS enrichment of paired D10A Cas9 nickases coupled with fluorescent proteins. Arch Pharm Res 41(9):911–920.  https://doi.org/10.1007/s12272-018-1042-2 CrossRefPubMedGoogle Scholar
  48. Greco GE, Matsumoto Y, Brooks RC, Lu Z, Lieber MR, Tomkinson AE (2016) SCR7 is neither a selective nor a potent inhibitor of human DNA ligase IV. DNA Repair 43:18–23.  https://doi.org/10.1016/j.dnarep.2016.04.004 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Gutschner T, Haemmerle M, Genovese G, Draetta GF, Chin L (2016) Posttranslational regulation of Cas9 during G1 enhances homology-directed repair. Cell Rep 14:1555–1566CrossRefGoogle Scholar
  50. Ha TK, Kim YG, Lee GM (2014) Effect of lithium chloride on the production and sialylation of Fc-fusion protein in Chinese hamster ovary cell culture. Appl Microbiol Biotechnol 98(22):9239–9248.  https://doi.org/10.1007/s00253-014-6012-0 CrossRefPubMedGoogle Scholar
  51. Hande KR, Hagey A, Berlin J, Cai Y, Meek K, Kobayashi H, Lockhart AC, Medina D, Sosman J, Gordon GB, Rothenberg ML (2006) The pharmacokinetics and safety of ABT-751, a novel, orally bioavailable sulfonamide antimitotic agent: results of a phase 1 study. Clin Cancer Res 12(9):2834–2840CrossRefGoogle Scholar
  52. Handschin U, Sigg HP, Tamm C (1968) Biosynthesis of brefeldin A. Helv Chim Acta 51(8):1943–1965CrossRefGoogle Scholar
  53. He X, Tan C, Wang F, Wang Y, Zhou R, Cui D, You W, Zhao H, Ren J, Feng B (2016) Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair. Nucleic Acids Res 44(9):e85.  https://doi.org/10.1093/nar/gkw064 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Helms JB, Rothman JE (1992) Inhibition by brefeldin A of a Golgi membrane enzyme that catalyses exchange of guanine nucleotide bound to ARF. Nature 360(6402):352–354CrossRefGoogle Scholar
  55. Hockemeyer D, Soldner F, Beard C, Gao Q, Mitalipova M, DeKelver RC, Katibah GE, Amora R, Boydston EA, Zeitler B, Meng X, Miller JC, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jaenisch R (2009) Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol 27(9):851–857.  https://doi.org/10.1038/nbt.1562 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Hockemeyer D, Wang H, Kiani S, Lai CS, Gao Q, Cassady JP, Cost GJ, Zhang L, Santiago Y, Miller JC, Zeitler B, Cherone JM, Meng X, Hinkley SJ, Rebar EJ, Gregory PD, Urnov FD, Jaenisch R (2011) Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol 29(8):731–734.  https://doi.org/10.1038/nbt.1927 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Hoessel R, Leclerc S, Endicott JA, Nobel ME, Lawrie A, Tunnah P, Leost M, Damiens E, Marie D, Marko D, Niederberger E, Tang W, Eisenbrand G, Meijer L (1999) Indirubin, the active constituent of a Chinese antileukaemia medicine, inhibits cyclin-dependent kinases. Nat Cell Biol 1(1):60–67CrossRefGoogle Scholar
  58. Hollick JJ, Golding BT, Hardcastle IR, Martin N, Richardson C, Rigoreau LJ, Smith GC, Griffin RJ (2003) 2,6-disubstituted pyran-4-one and thiopyran-4-one inhibitors of DNA-dependent protein kinase (DNA-PK). Bioorg Med Chem Lett 13(18):3083–3086CrossRefGoogle Scholar
  59. Howden SE, McColl B, Glaser A, Vadolas J, Petrou S, Little MH, Elefanty AG, Stanley EG (2016) A Cas9 variant for efficient generation of indel-free knockin or gene-corrected human pluripotent stem cells. Stem Cell Rep 7:508–517CrossRefGoogle Scholar
  60. Isobe SY, Nagao K, Nozaki N, Kimura H, Obuse C (2017) Inhibition of RIF1 by SCAI allows BRCA1-mediated repair. Cell Rep 20(2):297–307.  https://doi.org/10.1016/j.celrep.2017.06.056 CrossRefPubMedGoogle Scholar
  61. Jayathilaka K, Sheridan SD, Bold TD, Bochenska K, Logan HL, Weichselbaum RR, Bishop DK, Connell PP (2008) A chemical compound that stimulates the human homologous recombination protein RAD51. Proc Natl Acad Sci USA 105(41):15848–15853.  https://doi.org/10.1073/pnas.0808046105 CrossRefPubMedGoogle Scholar
  62. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821CrossRefGoogle Scholar
  63. Kakarougkas A, Jeggo PA (2014) DNA DSB repair pathway choice: an orchestrated handover mechanism. Br J Radiol 87(1035):20130685.  https://doi.org/10.1259/bjr.20130685 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Kakarougkas A, Ismail A, Katsuki Y, Freire R, Shibata A, Jeggo PA (2013) Co-operation of BRCA1 and POH1 relieves the barriers posed by 53BP1 and RAP80 to resection. Nucleic Acids Res 41(22):10298–10311.  https://doi.org/10.1093/nar/gkt802 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Karanam K, Kafri R, Loewer A, Lahav G (2012) Quantitative live cell imaging reveals a gradual shift between DNA repair mechanisms and a maximal use of HR in mid S phase. Mol Cell 47(2):320–329.  https://doi.org/10.1016/j.molcel.2012.05.052 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Kawabe Y, Komatsu S, Komatsu S, Murakami M, Ito A, Sakuma T, Nakamura T, Yamamoto T, Kamihira M (2018) Targeted knock-in of an scFv-Fc antibody gene into the hprt locus of Chinese hamster ovary cells using CRISPR/Cas9 and CRIS-PITCh systems. J Biosci Bioeng 125(5):599–605.  https://doi.org/10.1016/j.jbiosc.2017.12.003 CrossRefPubMedGoogle Scholar
  67. Kent T, Chandramouly G, McDevitt SM, Ozdemir AY, Pomerantz RT (2015) Mechanism of microhomology-mediated end-joining promoted by human DNA polymerase θ. Nat Struct Mol Biol 22(3):230–237.  https://doi.org/10.1038/nsmb.2961 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA 93(3):1156–1160CrossRefGoogle Scholar
  69. Ktistakis NT, Linder ME, Roth MG (1992) Action of brefeldin A blocked by activation of a pertussis-toxin-sensitive G protein. Nature 356(6367):344–346CrossRefGoogle Scholar
  70. Langerak P, Mejia-Ramirez E, Limbo O, Russell P (2011) Release of Ku and MRN from DNA ends by Mre11 nuclease activity and Ctp1 is required for homologous recombination repair of double-strand breaks. PLoS Genet 7(9):e1002271.  https://doi.org/10.1371/journal.pgen.1002271 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Lee JS, Grav LM, Pedersen LE, Lee GM, Kildegaard HF (2016) Accelerated homology-directed targeted integration of transgenes in Chinese hamster ovary cells via CRISPR/Cas9 and fluorescent enrichment. Biotechnol Bioeng 113(11):2518–2523.  https://doi.org/10.1002/bit.26002 CrossRefPubMedGoogle Scholar
  72. Li G, Zhang X, Zhong C, Mo J, Quan R, Yang J, Liu D, Li Z, Yang H, Wu Z (2017) Small molecules enhance CRISPR/Cas9-mediated homology-directed genome editing in primary cells. Sci Rep 7(1):8943.  https://doi.org/10.1038/s41598-017-09306-x CrossRefPubMedPubMedCentralGoogle Scholar
  73. Liang L, Deng L, Nguyen SC, Zhao X, Maulion CD, Shao C, Tischfield JA (2008) Human DNA ligases I and III, but not ligase IV, are required for microhomology-mediated end joining of DNA double-strand breaks. Nucleic Acids Res 36(10):3297–3310.  https://doi.org/10.1093/nar/gkn184 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Lieber MR (2008) The mechanism of human nonhomologous DNA end joining. J Biol Chem 283(1):1–5CrossRefGoogle Scholar
  75. Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79:181–211.  https://doi.org/10.1146/annurev.biochem.052308.093131 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Lin S, Staahl BT, Alla RK, Doudna JA (2014) Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Elife 3:e04766.  https://doi.org/10.7554/eLife.04766 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Lonowski LA, Narimatsu Y, Riaz A, Delay CE, Yang Z, Niola F, Duda K, Ober EA, Clausen H, Wandall HH, Hansen SH, Bennett EP, Frödin M (2017) Genome editing using FACS enrichment of nuclease-expressing cells and indel detection by amplicon analysis. Nat Protoc 12(3):581–603.  https://doi.org/10.1038/nprot.2016.165 CrossRefPubMedGoogle Scholar
  78. Lu Y, Chen J, Xiao M, Li W, Miller DD (2012) An overview of tubulin inhibitors that interact with the colchicine binding site. Pharm Res 29(11):2943–2971.  https://doi.org/10.1007/s11095-012-0828-z CrossRefPubMedPubMedCentralGoogle Scholar
  79. Luduena RF, Roach MC (1991) Tubulin sulfhydryl groups as probes and targets for antimitotic and antimicrotubule agents. Pharmacol Ther 49(1–2):133–152CrossRefGoogle Scholar
  80. Ma Y, Pannicke U, Schwarz K, Lieber MR (2002) Hairpin opening and overhang processing by an artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell 108(6):781–794CrossRefGoogle Scholar
  81. Ma Y, Chen W, Zhang X, Yu L, Dong W, Pan S, Gao S, Huang X, Zhang L (2016) Increasing the efficiency of CRISPR/Cas9-mediated precise genome editing in rats by inhibiting NHEJ and using Cas9 protein. RNA Biol 13(7):605–612.  https://doi.org/10.1080/15476286.2016.1185591 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Mao CD, Hoang P, DiCorleto PE (2001) Lithium inhibits cell cycle progression and induces stabilization of p53 in bovine aortic endothelial cells. J Biol Chem 276(28):26180–26188CrossRefGoogle Scholar
  83. Maresca M, Lin VG, Guo N, Yang Y (2013) Obligate ligation-gated recombination (ObLiGaRe): custom-designed nuclease-mediated targeted integration through nonhomologous end joining. Genome Res 23(3):539–546.  https://doi.org/10.1101/gr.145441.112 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL (2015) Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol 33(5):538–542.  https://doi.org/10.1038/nbt.3190 CrossRefPubMedPubMedCentralGoogle Scholar
  85. McVey M, Lee SE (2008) MMEJ repair of double-strand breaks (director’s cut): deleted sequences and alternative endings. Trends Genet 24(11):529–538.  https://doi.org/10.1016/j.tig.2008.08.007 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Mitzelfelt KA, McDermott-Roe C, Grzybowski MN, Marquez M, Kuo CT, Riedel M, Lai S, Choi MJ, Kolander KD, Helbling D, Dimmock DP, Battle MA, Jou CJ, Tristani-Firouzi M, Verbsky JW, Benjamin IJ, Geurts AM (2017) Efficient precision genome editing in iPSCs via genetic co-targeting with selection. Stem Cell Rep 8(3):491–499.  https://doi.org/10.1016/j.stemcr.2017.01.021 CrossRefGoogle Scholar
  87. Moreno-Mateos MA, Fernandez JP, Rouet R, Vejnar CE, Lane MA, Mis E, Khokha MK, Doudna JA, Giraldez AJ (2017) CRISPR-Cpf1 mediates efficient homology-directed repair and temperature-controlled genome editing. Nat Commun 8(1):2024.  https://doi.org/10.1038/s41467-017-01836-2 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Nakade S, Tsubota T, Sakane Y, Kume S, Sakamoto N, Obara M, Daimon T, Sezutsu H, Yamamoto T, Sakuma T, Suzuki KT (2014) Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat Commun 5:5560.  https://doi.org/10.1038/ncomms6560 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Neal JA, Dang V, Douglas P, Wold MS, Lees-Miller SP, Meek K (2011) Inhibition of homologous recombination by DNA-dependent protein kinase requires kinase activity, is titratable, and is modulated by autophosphorylation. Mol Cell Biol 31(8):1719–1733.  https://doi.org/10.1128/MCB.01298-10 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Niccheri F, Pecori R, Conticello SG (2017) An efficient method to enrich for knock-out and knock-in cellular clones using the CRISPR/Cas9 system. Cell Mol Life Sci 74(18):3413–3423.  https://doi.org/10.1007/s00018-017-2524-y CrossRefPubMedPubMedCentralGoogle Scholar
  91. Pan Y, Shen N, Jung-Klawitter S, Betzen C, Hoffmann GF, Hoheisel JD, Blau N (2016) CRISPR RNA-guided FokI nucleases repair a PAH variant in a phenylketonuria model. Sci Rep 6:35794.  https://doi.org/10.1038/srep35794 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Paquet D, Kwart D, Chen A, Sproul A, Jacob S, Teo S, Olsen KM, Gregg A, Noggle S, Tessier-Lavigne M (2016) Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature 533(7601):125–129.  https://doi.org/10.1038/nature17664 CrossRefPubMedGoogle Scholar
  93. Parmee ER, Ok HO, Candelore MR, Tota L, Deng L, Strader CD, Wyvratt MJ, Fisher MH, Weber AE (1998) Discovery of L-755,507: a subnanomolar human beta 3 adrenergic receptor agonist. Bioorg Med Chem Lett 8(9):1107–1112CrossRefGoogle Scholar
  94. Pellegrini L, Yu DS, Lo T, Anand S, Lee M, Blundell TL, Venkitaraman AR (2002) Insights into DNA recombination from the structure of a RAD51-BRCA2 complex. Nature 420(6913):287–293CrossRefGoogle Scholar
  95. Pérez-Benavente B, Farràs R (2016) Cell synchronization techniques to study the action of CDK inhibitors. Methods Mol Biol 1336:85–93.  https://doi.org/10.1007/978-1-4939-2926-9_8 CrossRefPubMedGoogle Scholar
  96. Pinder J, Salsman J, Dellaire G (2015) Nuclear domain ‘knock-in’ screen for the evaluation and identification of small molecule enhancers of CRISPR-based genome editing. Nucleic Acids Res 43(19):9379–9392.  https://doi.org/10.1093/nar/gkv993 CrossRefPubMedPubMedCentralGoogle Scholar
  97. Radhakrishnan SK, Lees-Miller SP (2017) DNA requirements for interaction of the C-terminal region of Ku80 with the DNA-dependent protein kinase catalytic subunit (DNA-PKcs). DNA Repair 57:17–28.  https://doi.org/10.1016/j.dnarep.2017.06.001 CrossRefPubMedGoogle Scholar
  98. Rahman SH, Bobis-Wozowicz S, Chatterjee D, Gellhaus K, Pars K, Heilbronn R, Jacobs R, Cathomen T (2013) The nontoxic cell cycle modulator indirubin augments transduction of adeno-associated viral vectors and zinc-finger nuclease-mediated gene targeting. Hum Gene Ther 24:67–77CrossRefGoogle Scholar
  99. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013a) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8(11):2281–2308CrossRefGoogle Scholar
  100. Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, Zhang F (2013b) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154(6):1380–1389.  https://doi.org/10.1016/j.cell.2013.08.021 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Reid DA, Keegan S, Leo-Macias A, Watanabe G, Strande NT, Chang HH, Oksuz BA, Fenyo D, Lieber MR, Ramsden DA, Rothenberg E (2015) Organization and dynamics of the nonhomologous end-joining machinery during DNA double-strand break repair. Proc Natl Acad Sci USA 112(20):E2575–E2584.  https://doi.org/10.1073/pnas.1420115112 CrossRefPubMedGoogle Scholar
  102. Richardson CD, Ray GJ, DeWitt MA, Curie GL, Corn JE (2016) Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat Biotechnol 34(3):339–344.  https://doi.org/10.1038/nbt.3481 CrossRefPubMedGoogle Scholar
  103. Rivera-Torres N, Strouse B, Bialk P, Niamat RA, Kmiec EB (2014) The position of DNA cleavage by TALENs and cell synchronization influences the frequency of gene editing directed by single-stranded oligonucleotides. PLoS One 9(5):e96483.  https://doi.org/10.1371/journal.pone.0096483 CrossRefPubMedPubMedCentralGoogle Scholar
  104. Robert F, Barbeau M, Éthier S, Dostie J, Pelletier J (2015) Pharmacological inhibition of DNA-PK stimulates Cas9-mediated genome editing. Genome Med 7:93.  https://doi.org/10.1186/s13073-015-0215-6 CrossRefPubMedPubMedCentralGoogle Scholar
  105. Saparbaev M, Prakash L, Prakash S (1996) Requirement of mismatch repair genes MSH2 and MSH3 in the RAD1-RAD10 pathway of mitotic recombination in Saccharomyces cerevisiae. Genetics 142:727–736PubMedPubMedCentralGoogle Scholar
  106. Savic N, Ringnalda FC, Lindsay H, Berk C, Bargsten K, Li Y, Neri D, Robinson MD, Ciaudo C, Hall J, Jinek M, Schwank G (2018) Covalent linkage of the DNA repair template to the CRISPR-Cas9 nuclease enhances homology-directed repair. Elife.  https://doi.org/10.7554/eLife.33761 CrossRefPubMedPubMedCentralGoogle Scholar
  107. Seol JH, Shim EY, Lee SE (2018) Microhomology-mediated end joining: good, bad and ugly. Mutat Res 809:81–87.  https://doi.org/10.1016/j.mrfmmm.2017.07.002 CrossRefPubMedGoogle Scholar
  108. Shao S, Ren C, Liu Z, Bai Y, Chen Z, Wei Z, Wang X, Zhang Z, Xu K (2017) Enhancing CRISPR/Cas9-mediated homology-directed repair in mammalian cells by expressing Saccharomyces cerevisiae Rad52. Int J Biochem Cell Biol 92:43–52.  https://doi.org/10.1016/j.biocel.2017.09.012 CrossRefPubMedGoogle Scholar
  109. Shi J, Shen HM (2008) Critical role of Bid and Bax in indirubin-3′-monoxime-induced apoptosis in human cancer cells. Biochem Pharmacol 75(9):1729–1742.  https://doi.org/10.1016/j.bcp.2008.01.021 CrossRefPubMedGoogle Scholar
  110. Shy BR, MacDougall MS, Clarke R, Merrill BJ (2016) Co-incident insertion enables high efficiency genome engineering in mouse embryonic stem cells. Nucleic Acids Res 44(16):7997–8010.  https://doi.org/10.1093/nar/gkw685 CrossRefPubMedPubMedCentralGoogle Scholar
  111. Simonetta M, de Krijger I, Serrat J, Moatti N, Fortunato D, Hoekman L, Bleijerveld OB, Altelaar AFM, Jacobs JJL (2018) H4K20me2 distinguishes pre-replicative from post-replicative chromatin to appropriately direct DNA repair pathway choice by 53BP1-RIF1-MAD2L2. Cell Cycle 17(1):124–136.  https://doi.org/10.1080/15384101.2017.1404210 CrossRefPubMedGoogle Scholar
  112. Singh AM, Adjan Steffey VV, Yeshi T, Allison DW (2015a) Gene editing in human pluripotent stem cells: choosing the correct path. J Stem Cell Regen Biol. http://www.ommegaonline.org/article-details/Gene-Editing-in-Human-Pluripotent-Stem-Cells---Choosing-the-Correct-Path/630. Accessed 22 Oct 2018
  113. Singh P, Schimenti JC, Bolcun-Filas E (2015b) A mouse geneticist’s practical guide to CRISPR applications. Genetics 199(1):1–15.  https://doi.org/10.1534/genetics.114.169771 CrossRefPubMedGoogle Scholar
  114. Sinha S, Villarreal D, Shim EY, Lee SE (2016) Risky business: microhomology-mediated end joining. Mutat Res 788:17–24.  https://doi.org/10.1016/j.mrfmmm.2015.12.005 CrossRefPubMedPubMedCentralGoogle Scholar
  115. Song J, Yang D, Xu J, Zhu T, Chen YE, Zhang J (2016) RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency. Nat Commun 7:10548.  https://doi.org/10.1038/ncomms10548 CrossRefPubMedPubMedCentralGoogle Scholar
  116. Srivastava M, Nambiar M, Sharma S, Karki SS, Goldsmith G, Hegde M, Kumar S, Pandey M, Singh RK, Ray P, Natarajan R, Kelkar M, De A, Choudhary B, Raghavan SC (2012) An inhibitor of nonhomologous end-joining abrogates double-strand break repair and impedes cancer progression. Cell 151(7):1474–1487.  https://doi.org/10.1016/j.cell.2012.11.054 CrossRefPubMedGoogle Scholar
  117. Stambolic V, Ruel L, Woodgett JR (1996) Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr Biol 6(12):1664–1668CrossRefGoogle Scholar
  118. Su S, Hu B, Shao J, Shen B, Du J, Du Y, Zhou J, Yu L, Zhang L, Chen F, Sha H, Cheng L, Meng F, Zou Z, Huang X, Liu B (2016) CRISPR-Cas9 mediated efficient PD-1 disruption on human primary T cells from cancer patients. Sci Rep 6:20070.  https://doi.org/10.1038/srep20070 CrossRefPubMedPubMedCentralGoogle Scholar
  119. Sung P (1997) Function of yeast Rad52 protein as a mediator between replication protein A and the Rad51 recombinase. J Biol Chem 272:28194–28197CrossRefGoogle Scholar
  120. Suzuki K, Tsunekawa Y, Hernandez-Benitez R, Wu J, Zhu J, Kim EJ, Hatanaka F, Yamamoto M, Araoka T, Li Z, Kurita M, Hishida T, Li M, Aizawa E, Guo S, Chen S, Goebl A, Soligalla RD, Qu J, Jiang T, Fu X, Jafari M, Esteban CR, Berggren WT, Lajara J, Nuñez-Delicado E, Guillen P, Campistol JM, Matsuzaki F, Liu GH, Magistretti P, Zhang K, Callaway EM, Zhang K, Belmonte JC (2016) In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 540(7631):144–149.  https://doi.org/10.1038/nature20565 CrossRefPubMedPubMedCentralGoogle Scholar
  121. Symington LS, Gautier J (2011) Double-strand break end resection and repair pathway choice. Annu Rev Genet 45:247–271.  https://doi.org/10.1146/annurev-genet-110410-132435 CrossRefPubMedGoogle Scholar
  122. Takayama K, Igai K, Hagihara Y, Hashimoto R, Hanawa M, Sakuma T, Tachibana M, Sakurai F, Yamamoto T, Mizuguchi H (2017) Highly efficient biallelic genome editing of human ES/iPS cells using a CRISPR/Cas9 or TALEN system. Nucleic Acids Res 45(9):5198–5207.  https://doi.org/10.1093/nar/gkx130 CrossRefPubMedPubMedCentralGoogle Scholar
  123. Tálas A, Kulcsár PI, Weinhardt N, Borsy A, Tóth E, Szebényi K, Krausz SL, Huszár K, Vida I, Sturm Á, Gordos B, Hoffmann OI, Bencsura P, Nyeste A, Ligeti Z, Fodor E, Welker E (2017) A convenient method to pre-screen candidate guide RNAs for CRISPR/Cas9 gene editing by NHEJ-mediated integration of a ‘self-cleaving’ GFP-expression plasmid. DNA Res 24(6):609–621.  https://doi.org/10.1093/dnares/dsx029 CrossRefPubMedPubMedCentralGoogle Scholar
  124. Tebas P, Stein D, Tang WW, Frank I, Wang SQ, Lee G, Spratt SK, Surosky RT, Giedlin MA, Nichol G, Holmes MC, Gregory PD, Ando DG, Kalos M, Collman RG, Binder-Scholl G, Plesa G, Hwang WT, Levine BL, June CH (2014) Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 370(10):901–910.  https://doi.org/10.1056/NEJMoa1300662 CrossRefPubMedPubMedCentralGoogle Scholar
  125. Tóth E, Weinhardt N, Bencsura P, Huszár K, Kulcsár PI, Tálas A, Fodor E, Welker E (2016) Cpf1 nucleases demonstrate robust activity to induce DNA modification by exploiting homology directed repair pathways in mammalian cells. Biol Direct 11:46.  https://doi.org/10.1186/s13062-016-0147-0 CrossRefPubMedPubMedCentralGoogle Scholar
  126. Truong LN, Li Y, Shi LZ, Hwang PY, He J, Wang H, Razavian N, Berns MW, Wu X (2013) Microhomology-mediated end joining and homologous recombination share the initial end resection step to repair DNA double-strand breaks in mammalian cells. Proc Natl Acad Sci USA 110(19):7720–7725.  https://doi.org/10.1073/pnas.1213431110 CrossRefPubMedGoogle Scholar
  127. Tsakraklides V, Brevnova E, Stephanopoulos G, Shaw AJ (2015) Improved gene targeting through cell cycle synchronization. PLoS One 10(7):e0133434.  https://doi.org/10.1371/journal.pone.0133434 CrossRefPubMedPubMedCentralGoogle Scholar
  128. Vang O, Ahmad N, Baile CA, Baur JA, Brown K, Csiszar A, Das DK, Delmas D, Gottfried C, Lin HY, Ma QY, Mukhopadhyay P, Nalini N, Pezzuto JM, Richard T, Shukla Y, Surh YJ, Szekeres T, Szkudelski T, Walle T, Wu JM (2011) What is new for an old molecule? Systematic review and recommendations on the use of resveratrol. PLoS One 6(6):e19881.  https://doi.org/10.1371/journal.pone.0019881 CrossRefPubMedPubMedCentralGoogle Scholar
  129. Vartak SV, Raghavan SC (2015) Inhibition of nonhomologous end joining to increase the specificity of CRISPR/Cas9 genome editing. FEBS J 282(22):4289–4294.  https://doi.org/10.1111/febs.13416 CrossRefPubMedGoogle Scholar
  130. Verma P, Greenberg RA (2016) Noncanonical views of homology-directed DNA repair. Genes Dev 30(10):1138–1154.  https://doi.org/10.1101/gad.280545.116 CrossRefPubMedPubMedCentralGoogle Scholar
  131. Waldman AS (2008) Ensuring the fidelity of recombination in mammalian chromosomes. Bioessays 30(11–12):1163–1171.  https://doi.org/10.1002/bies.20845 CrossRefPubMedGoogle Scholar
  132. Wang B, Li K, Wang A, Reiser M, Saunders T, Lockey RF, Wang JW (2015) Highly efficient CRISPR/HDR-mediated knock-in for mouse embryonic stem cells and zygotes. Biotechniques 59(4):201–202.  https://doi.org/10.2144/000114339. 204, 206–8.CrossRefPubMedGoogle Scholar
  133. Woodard LE, Wilson MH (2015) piggyBac-ing models and new therapeutic strategies. Trends Biotechnol 33(9):525–533.  https://doi.org/10.1016/j.tibtech.2015.06.009 CrossRefPubMedPubMedCentralGoogle Scholar
  134. Wu Y, Kantake N, Sugiyama T, Kowalczykowski SC (2008) Rad51 protein controls Rad52-mediated DNA annealing. J Biol Chem 283(21):14883–14892.  https://doi.org/10.1074/jbc.M801097200 CrossRefPubMedPubMedCentralGoogle Scholar
  135. Wu Y, Xu K, Ren C, Li X, Lv H, Han F, Wei Z, Wang X, Zhang Z (2017) Enhanced CRISPR/Cas9-mediated biallelic genome targeting with dual surrogate reporter-integrated donors. FEBS Lett 591(6):903–913.  https://doi.org/10.1002/1873-3468.12599 CrossRefPubMedGoogle Scholar
  136. Yaneva M, Kowalewski T, Lieber MR (1997) Interaction of DNA-dependent protein kinase with DNA and with Ku: biochemical and atomic-force microscopy studies. EMBO J 16(16):5098–5112CrossRefGoogle Scholar
  137. Yang L, Guell M, Byrne S, Yang JL, De Los Angeles A, Mali P, Aach J, Kim-Kiselak C, Briggs AW, Rios X, Huang PY, Daley G, Church G (2013) Optimization of scarless human stem cell genome editing. Nucleic Acids Res 41(19):9049–9061.  https://doi.org/10.1093/nar/gkt555 CrossRefPubMedPubMedCentralGoogle Scholar
  138. Yang H, Wang H, Jaenisch R (2014) Generating genetically modified mice using CRISPR/Cas-mediated genome engineering. Nat Protoc 9(8):1956–1968.  https://doi.org/10.1038/nprot.2014.134 CrossRefPubMedGoogle Scholar
  139. Yang D, Scavuzzo MA, Chmielowiec J, Sharp R, Bajic A, Borowiak M (2016) Enrichment of G2/M cell cycle phase in human pluripotent stem cells enhances HDR-mediated gene repair with customizable endonucleases. Sci Rep 6:21264.  https://doi.org/10.1038/srep21264 CrossRefPubMedPubMedCentralGoogle Scholar
  140. Ye L, Wang C, Hong L, Sun N, Chen D, Chen S, Han F (2018) Programmable DNA repair with CRISPRa/i enhanced homology-directed repair efficiency with a single Cas9. Cell Discov 4:46.  https://doi.org/10.1038/s41421-018-0049-7 CrossRefPubMedPubMedCentralGoogle Scholar
  141. Yu C, Liu Y, Ma T, Liu K, Xu S, Zhang Y, Liu H, La Russa M, Xie M, Ding S, Qi LS (2015) Small molecules enhance CRISPR genome editing in pluripotent stem cells. Cell Stem Cell 16(2):142–147.  https://doi.org/10.1016/j.stem.2015.01.003 CrossRefPubMedPubMedCentralGoogle Scholar
  142. Yumlu S, Stumm J, Bashir S, Dreyer AK, Lisowski P, Danner E, Kühn R (2017) Gene editing and clonal isolation of human induced pluripotent stem cells using CRISPR/Cas9. Methods 121–122:29–44.  https://doi.org/10.1016/j.ymeth.2017.05.009 CrossRefPubMedGoogle Scholar
  143. Zhang F, Wen Y, Guo X (2014) CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum Mol Genet 23(R1):R40–R46CrossRefGoogle Scholar
  144. Zhang A, Peng B, Huang P, Chen J, Gong Z (2017a) The p53-binding protein 1-Tudor-interacting repair regulator complex participates in the DNA damage response. J Biol Chem 292(16):6461–6467.  https://doi.org/10.1074/jbc.M117.777474 CrossRefPubMedPubMedCentralGoogle Scholar
  145. Zhang JP, Li XL, Li GH, Chen W, Arakaki C, Botimer GD, Baylink D, Zhang L, Wen W, Fu YW, Xu J, Chun N, Yuan W, Cheng T, Zhang XB (2017b) Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage. Genome Biol 18(1):35.  https://doi.org/10.1186/s13059-017-1164-8 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of MutagenesisFederal State Budgetary Institution “Research Centre for Medical Genetics”MoscowRussia
  2. 2.Department of Molecular and Cellular GeneticsThe Russian National Research Medical University Named after N.I. PirogovMoscowRussia

Personalised recommendations