Advertisement

Human Genetics

, Volume 138, Issue 1, pp 21–35 | Cite as

Delineation of LZTR1 mutation-positive patients with Noonan syndrome and identification of LZTR1 binding to RAF1–PPP1CB complexes

  • Ikumi Umeki
  • Tetsuya Niihori
  • Taiki Abe
  • Shin-ichiro Kanno
  • Nobuhiko Okamoto
  • Seiji Mizuno
  • Kenji Kurosawa
  • Keisuke Nagasaki
  • Makoto Yoshida
  • Hirofumi Ohashi
  • Shin-ichi Inoue
  • Yoichi Matsubara
  • Ikuma Fujiwara
  • Shigeo Kure
  • Yoko AokiEmail author
Original Investigation

Abstract

RASopathies are a group of developmental disorders caused by mutations in genes that regulate the RAS/MAPK pathway and include Noonan syndrome (NS), Costello syndrome, cardiofaciocutaneous syndrome and other related disorders. Whole exome sequencing studies recently identified LZTR1, PPP1CB and MRAS as new causative genes in RASopathies. However, information on the phenotypes of LZTR1 mutation-positive patients and functional properties of the mutations are limited. To identify variants of LZTR1, PPP1CB, and MRAS, we performed a targeted next-generation sequencing and reexamined previously analyzed exome data in 166 patients with suspected RASopathies. We identified eight LZTR1 variants, including a de novo variant, in seven probands who were suspicious for NS and one known de novo PPP1CB variant in a patient with NS. One of the seven probands had two compound heterozygous LZTR1 variants, suggesting autosomal recessive inheritance. All probands with LZTR1 variants had cardiac defects, including hypertrophic cardiomyopathy and atrial septal defect. Five of the seven probands had short stature or intellectual disabilities. Immunoprecipitation of endogenous LZTR1 followed by western blotting showed that LZTR1 bound to the RAF1–PPP1CB complex. Cells transfected with a small interfering RNA against LZTR1 exhibited decreased levels of RAF1 phosphorylated at Ser259. These are the first results to demonstrate LZTR1 in association with the RAF1–PPP1CB complex as a component of the RAS/MAPK pathway.

Notes

Acknowledgements

The authors thank the patients, their family members, and the doctors who participated in this study. We are grateful to Jun-ichi Miyazaki of Osaka University for supplying the pCAGGS expression vector. We thank Daiju Oba, Ayumi Nishiyama, Shingo Takahara, Aya Shibui-Inoue, Yu Katata and Koki Nagai who contributed to the routine diagnostic work, and Yoko Tateda, Kumi Kato, and Riyo Takahashi for their technical assistance.

Funding

This study was supported in part by the Grants-in-Aid by the Practical Research Project for Rare/Intractable Diseases from the Japan Agency for Medical Research and Development, AMED to Y.A. (18ek0109241h0002), and the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Numbers 17H04223 to Y.A. and 18K15657 to T.A.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

439_2018_1951_MOESM1_ESM.docx (50 kb)
Supplementary material 1 (DOCX 49 KB)
439_2018_1951_MOESM2_ESM.pdf (2 mb)
Supplementary material 2 (PDF 2060 KB)

References

  1. Aoki Y, Niihori T, Narumi Y, Kure S, Matsubara Y (2008) The RAS/MAPK syndromes: novel roles of the RAS pathway in human genetic disorders. Hum Mutat 29:992–1006.  https://doi.org/10.1002/humu.20748 CrossRefGoogle Scholar
  2. Aoki Y, Niihori T, Banjo T, Okamoto N, Mizuno S, Kurosawa K, Ogata T, Takada F, Yano M, Ando T, Hoshika T, Barnett C, Ohashi H, Kawame H, Hasegawa T, Okutani T, Nagashima T, Hasegawa S, Funayama R, Nagashima T, Nakayama K, Inoue S, Watanabe Y, Ogura T, Matsubara Y (2013) Gain-of-function mutations in RIT1 cause Noonan syndrome, a RAS/MAPK pathway syndrome. Am J Hum Genet 93:173–180.  https://doi.org/10.1016/j.ajhg.2013.05.021 CrossRefGoogle Scholar
  3. Bertola D, Yamamoto G, Buscarilli M, Jorge A, Passos-Bueno MR, Kim C (2017) The recurrent PPP1CB mutation p.Pro49Arg in an additional Noonan-like syndrome individual: Broadening the clinical phenotype. Am J Med Genet A 173:824–828.  https://doi.org/10.1002/ajmg.a.38070 CrossRefGoogle Scholar
  4. Chen PC, Yin J, Yu HW, Yuan T, Fernandez M, Yung CK, Trinh QM, Peltekova VD, Reid JG, Tworog-Dube E, Morgan MB, Muzny DM, Stein L, McPherson JD, Roberts AE, Gibbs RA, Neel BG, Kucherlapati R (2014) Next-generation sequencing identifies rare variants associated with Noonan syndrome. Proc Natl Acad Sci USA 111:11473–11478.  https://doi.org/10.1073/pnas.1324128111 CrossRefGoogle Scholar
  5. Farschtschi S, Mautner VF, Pham M, Nguyen R, Kehrer-Sawatzki H, Hutter S, Friedrich RE, Schulz A, Morrison H, Jones DT, Bendszus M, Baumer P (2016) Multifocal nerve lesions and LZTR1 germline mutations in segmental schwannomatosis. Ann Neurol 80:625–628.  https://doi.org/10.1002/ana.24753 CrossRefGoogle Scholar
  6. Frattini V, Trifonov V, Chan JM, Castano A, Lia M, Abate F, Keir ST, Ji AX, Zoppoli P, Niola F, Danussi C, Dolgalev I, Porrati P, Pellegatta S, Heguy A, Gupta G, Pisapia DJ, Canoll P, Bruce JN, McLendon RE, Yan H, Aldape K, Finocchiaro G, Mikkelsen T, Prive GG, Bigner DD, Lasorella A, Rabadan R, Iavarone A (2013) The integrated landscape of driver genomic alterations in glioblastoma. Nat Genet 45:1141–1149.  https://doi.org/10.1038/ng.2734 CrossRefGoogle Scholar
  7. Gripp KW, Aldinger KA, Bennett JT, Baker L, Tusi J, Powell-Hamilton N, Stabley D, Sol-Church K, Timms AE, Dobyns WB (2016) A novel rasopathy caused by recurrent de novo missense mutations in PPP1CB closely resembles Noonan syndrome with loose anagen hair. Am J Med Genet A 170:2237–2247.  https://doi.org/10.1002/ajmg.a.37781 CrossRefGoogle Scholar
  8. Higgins EM, Bos JM, Mason-Suares H, Tester DJ, Ackerman JP, MacRae CA, Sol-Church K, Gripp KW, Urrutia R, Ackerman MJ (2017) Elucidation of MRAS-mediated Noonan syndrome with cardiac hypertrophy. JCI Insight 2:e91225.  https://doi.org/10.1172/jci.insight.91225 CrossRefGoogle Scholar
  9. Hutter S, Piro RM, Reuss DE, Hovestadt V, Sahm F, Farschtschi S, Kehrer-Sawatzki H, Wolf S, Lichter P, von Deimling A, Schuhmann MU, Pfister SM, Jones DTW, Mautner VF (2014) Whole exome sequencing reveals that the majority of schwannomatosis cases remain unexplained after excluding SMARCB1 and LZTR1 germline variants. Acta Neuropathol 128:449–452.  https://doi.org/10.1007/s00401-014-1311-1 CrossRefGoogle Scholar
  10. Johnston JJ, van der Smagt JJ, Rosenfeld JA, Pagnamenta AT, Alswaid A, Baker EH, Blair E, Borck G, Brinkmann J, Craigen W, Dung VC, Emrick L, Everman DB, van Gassen KL, Gulsuner S, Harr MH, Jain M, Kuechler A, Leppig KA, McDonald-McGinn DM, Can NTB, Peleg A, Roeder ER, Rogers RC, Sagi-Dain L, Sapp JC, Schaffer AA, Schanze D, Stewart H, Taylor JC, Verbeek NE, Walkiewicz MA, Zackai EH, Zweier C, Zenker M, Lee B, Biesecker LG (2018) Autosomal recessive Noonan syndrome associated with biallelic LZTR1 variants. Genet Med.  https://doi.org/10.1038/gim.2017.249 Google Scholar
  11. Kobayashi T, Aoki Y, Niihori T, Cave H, Verloes A, Okamoto N, Kawame H, Fujiwara I, Takada F, Ohata T, Sakazume S, Ando T, Nakagawa N, Lapunzina P, Meneses AG, Gillessen-Kaesbach G, Wieczorek D, Kurosawa K, Mizuno S, Ohashi H, David A, Philip N, Guliyeva A, Narumi Y, Kure S, Tsuchiya S, Matsubara Y (2010) Molecular and clinical analysis of RAF1 in Noonan syndrome and related disorders: dephosphorylation of serine 259 as the essential mechanism for mutant activation. Hum Mutat 31:284–294.  https://doi.org/10.1002/humu.21187 CrossRefGoogle Scholar
  12. Lu A, Pfeffer SR (2014) A CULLINary ride across the secretory pathway: more than just secretion. Trends Cell Biol 24:389–399.  https://doi.org/10.1016/j.tcb.2014.02.001 CrossRefGoogle Scholar
  13. Ma L, Bayram Y, McLaughlin HM, Cho MT, Krokosky A, Turner CE, Lindstrom K, Bupp CP, Mayberry K, Mu W, Bodurtha J, Weinstein V, Zadeh N, Alcaraz W, Powis Z, Shao Y, Scott DA, Lewis AM, White JJ, Jhangiani SN, Gulec EY, Lalani SR, Lupski JR, Retterer K, Schnur RE, Wentzensen IM, Bale S, Chung WK (2016) De novo missense variants in PPP1CB are associated with intellectual disability and congenital heart disease. Hum Genet 135:1399–1409.  https://doi.org/10.1007/s00439-016-1731-1 CrossRefGoogle Scholar
  14. Nacak TG, Leptien K, Fellner D, Augustin HG, Kroll J (2006) The BTB-kelch protein LZTR-1 is a novel Golgi protein that is degraded upon induction of apoptosis. J Biol Chem 281:5065–5071.  https://doi.org/10.1074/jbc.M509073200 CrossRefGoogle Scholar
  15. Nava C, Hanna N, Michot C, Pereira S, Pouvreau N, Niihori T, Aoki Y, Matsubara Y, Arveiler B, Lacombe D, Pasmant E, Parfait B, Baumann C, Heron D, Sigaudy S, Toutain A, Rio M, Goldenberg A, Leheup B, Verloes A, Cave H (2007) Cardio-facio-cutaneous and Noonan syndromes due to mutations in the RAS/MAPK signalling pathway: genotype-phenotype relationships and overlap with Costello syndrome. J Med Genet 44:763–771.  https://doi.org/10.1136/jmg.2007.050450 CrossRefGoogle Scholar
  16. Nishiyama A, Niihori T, Warita H, Izumi R, Akiyama T, Kato M, Suzuki N, Aoki Y, Aoki M (2017) Comprehensive targeted next-generation sequencing in Japanese familial amyotrophic lateral sclerosis. Neurobiol Aging 53:194.e1–194.e194.  https://doi.org/10.1016/j.neurobiolaging.2017.01.004 e8.CrossRefGoogle Scholar
  17. Niwa H, Yamamura K, Miyazaki J (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108:193–199CrossRefGoogle Scholar
  18. Paganini I, Chang VY, Capone GL, Vitte J, Benelli M, Barbetti L, Sestini R, Trevisson E, Hulsebos TJ, Giovannini M, Nelson SF, Papi L (2015) Expanding the mutational spectrum of LZTR1 in schwannomatosis. Eur J Hum Genet 23:963–968.  https://doi.org/10.1038/ejhg.2014.220 CrossRefGoogle Scholar
  19. Piotrowski A, Xie J, Liu YF, Poplawski AB, Gomes AR, Madanecki P, Fu C, Crowley MR, Crossman DK, Armstrong L, Babovic-Vuksanovic D, Bergner A, Blakeley JO, Blumenthal AL, Daniels MS, Feit H, Gardner K, Hurst S, Kobelka C, Lee C, Nagy R, Rauen KA, Slopis JM, Suwannarat P, Westman JA, Zanko A, Korf BR, Messiaen LM (2013) Germline loss-of-function mutations in LZTR1 predispose to an inherited disorder of multiple schwannomas. Nat Genet 46:182–187.  https://doi.org/10.1038/ng.2855 CrossRefGoogle Scholar
  20. Rodriguez-Viciana P, Oses-Prieto J, Burlingame A, Fried M, McCormick F (2006) A phosphatase holoenzyme comprised of Shoc2/Sur8 and the catalytic subunit of PP1 functions as an M-Ras effector to modulate Raf activity. Mol Cell 22:217–230.  https://doi.org/10.1016/j.molcel.2006.03.027 CrossRefGoogle Scholar
  21. Smith MJ, Isidor B, Beetz C, Williams SG, Bhaskar SS, Richer W, O’Sullivan J, Anderson B, Daly SB, Urquhart JE, Fryer A, Rustad CF, Mills SJ, Samii A, du Plessis D, Halliday D, Barbarot S, Bourdeaut F, Newman WG, Evans DG (2015) Mutations in LZTR1 add to the complex heterogeneity of schwannomatosis. Neurology 84:141–147.  https://doi.org/10.1212/WNL.0000000000001129 CrossRefGoogle Scholar
  22. Stogios PJ, Prive GG (2004) The BACK domain in BTB-kelch proteins. Trends Biochem Sci 29:634–637.  https://doi.org/10.1016/j.tibs.2004.10.003 CrossRefGoogle Scholar
  23. Villani A, Greer MC, Kalish JM, Nakagawara A, Nathanson KL, Pajtler KW, Pfister SM, Walsh MF, Wasserman JD, Zelley K, Kratz CP (2017) Recommendations for cancer surveillance in individuals with RASopathies and other rare genetic conditions with increased cancer risk. Clin Cancer Res 23:e83–e90.  https://doi.org/10.1158/1078-0432.CCR-17-0631 CrossRefGoogle Scholar
  24. Vissers LE, Bonetti M, Paardekooper Overman J, Nillesen WM, Frints SG, de Ligt J, Zampino G, Justino A, Machado JC, Schepens M, Brunner HG, Veltman JA, Scheffer H, Gros P, Costa JL, Tartaglia M, van der Burgt I, Yntema HG, den Hertog J (2015) Heterozygous germline mutations in A2ML1 are associated with a disorder clinically related to Noonan syndrome. Eur J Hum Genet 23:317–324.  https://doi.org/10.1038/ejhg.2014.115 CrossRefGoogle Scholar
  25. Wakula P, Beullens M, Ceulemans H, Stalmans W, Bollen M (2003) Degeneracy and function of the ubiquitous RVXF motif that mediates binding to protein phosphatase-1. J Biol Chem 278:18817–18823CrossRefGoogle Scholar
  26. Yamamoto GL, Aguena M, Gos M, Hung C, Pilch J, Fahiminiya S, Abramowicz A, Cristian I, Buscarilli M, Naslavsky MS, Malaquias AC, Zatz M, Bodamer O, Majewski J, Jorge AA, Pereira AC, Kim CA, Passos-Bueno MR, Bertola DR (2015) Rare variants in SOS2 and LZTR1 are associated with Noonan syndrome. J Med Genet 52:413–421.  https://doi.org/10.1136/jmedgenet-2015-103018 CrossRefGoogle Scholar
  27. Yaoita M, Niihori T, Mizuno S, Okamoto N, Hayashi S, Watanabe A, Yokozawa M, Suzumura H, Nakahara A, Nakano Y, Hokosaki T, Ohmori A, Sawada H, Migita O, Mima A, Lapunzina P, Santos-Simarro F, Garcia-Minaur S, Ogata T, Kawame H, Kurosawa K, Ohashi H, Inoue SI, Matsubara Y, Kure S, Aoki Y (2016) Spectrum of mutations and genotype–phenotype analysis in Noonan syndrome patients with RIT1 mutations. Hum Genet 135:209–222.  https://doi.org/10.1007/s00439-015-1627-5 CrossRefGoogle Scholar
  28. Young LC, Hartig N, Munoz-Alegre M, Oses-Prieto JA, Durdu S, Bender S, Vijayakumar V, Vietri Rudan M, Gewinner C, Henderson S, Jathoul AP, Ghatrora R, Lythgoe MF, Burlingame AL, Rodriguez-Viciana P (2013) An MRAS, SHOC2, and SCRIB complex coordinates ERK pathway activation with polarity and tumorigenic growth. Mol Cell 52:679–692.  https://doi.org/10.1016/j.molcel.2013.10.004 CrossRefGoogle Scholar
  29. Zambrano RM, Marble M, Chalew SA, Lilje C, Vargas A, Lacassie Y (2017) Further evidence that variants in PPP1CB cause a rasopathy similar to Noonan syndrome with loose anagen hair. Am J Med Genet A 173:565–567.  https://doi.org/10.1002/ajmg.a.38056 CrossRefGoogle Scholar
  30. Zhang Y, Dong C (2007) Regulatory mechanisms of mitogen-activated kinase signaling. Cell Mol Life Sci 64:2771–2789.  https://doi.org/10.1007/s00018-007-7012-3 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ikumi Umeki
    • 1
  • Tetsuya Niihori
    • 1
  • Taiki Abe
    • 1
  • Shin-ichiro Kanno
    • 2
  • Nobuhiko Okamoto
    • 3
  • Seiji Mizuno
    • 4
  • Kenji Kurosawa
    • 5
  • Keisuke Nagasaki
    • 6
  • Makoto Yoshida
    • 7
  • Hirofumi Ohashi
    • 8
  • Shin-ichi Inoue
    • 1
  • Yoichi Matsubara
    • 9
  • Ikuma Fujiwara
    • 10
  • Shigeo Kure
    • 11
  • Yoko Aoki
    • 1
    Email author
  1. 1.Department of Medical GeneticsTohoku University School of MedicineSendaiJapan
  2. 2.Division of Dynamic Proteome in Cancer and Aging, Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
  3. 3.Department of Medical GeneticsOsaka Women’s and Children’s HospitalIzumiJapan
  4. 4.Department of Pediatrics, Central HospitalAichi Human Service CenterKasugaiJapan
  5. 5.Division of Medical GeneticsKanagawa Children’s Medical CenterYokohamaJapan
  6. 6.Division of Pediatrics, Department of Homeostatic Regulation and DevelopmentNiigata University Graduate School of Medical and Dental SciencesNiigataJapan
  7. 7.Department of PediatricsSano Kosei General HospitalSanoJapan
  8. 8.Division of Medical GeneticsSaitama Children’s Medical CenterSaitamaJapan
  9. 9.National Research Institute for Child Health and DevelopmentTokyoJapan
  10. 10.Department of Pediatric Endocrinology and Environmental MedicineTohoku University Graduate School of MedicineSendaiJapan
  11. 11.Department of PediatricsTohoku University School of MedicineSendaiJapan

Personalised recommendations