Advertisement

Human Genetics

, Volume 137, Issue 6–7, pp 535–542 | Cite as

Admixture mapping and fine-mapping of birth weight loci in the Black Women’s Health Study

  • Heather M. Ochs-Balcom
  • Holly Shaw
  • Leah Preus
  • Julie R. Palmer
  • Stephen A. Haddad
  • Lynn Rosenberg
  • Edward A. Ruiz-Narváez
Original Investigation
  • 25 Downloads

Abstract

Several genome-wide association studies (GWAS) have identified genetic variants associated with birth weight. To date, however, most GWAS of birth weight have focused primarily on European ancestry samples even though prevalence of low birth weight is higher among African-Americans. We conducted admixture mapping using 2918 ancestral informative markers in 2596 participants of the Black Women’s Health Study, with the goal of identifying novel genomic regions where local African ancestry is associated with birth weight. In addition, we performed a replication analysis of 11 previously identified index single nucleotide polymorphisms (SNPs), and fine-mapped those genetic loci to identify better or new genetic variants associated with birth weight in African-Americans. We found that high African ancestry at 12q14 was associated with low birth weight, and we identified multiple independent birth weight-lowering variants in this genomic region. We replicated the association of a previous GWAS SNP in ADRB1 and our fine-mapping efforts suggested the presence of new birth weight-associated variants in ADRB1, HMGA2, and SLC2A4. Further studies are needed to determine whether birth weight-associated loci can in part explain race-associated birth weight disparities.

Notes

Acknowledgements

We thank the BWHS participants for their continuing participation in this research effort. This work was supported by grants R01MD007015 from the National Institute on Minority Health and Health Disparities, R01CA058420 and UM1CA164974 from the National Cancer Institute, and 11SDG7390014 from the American Heart Association. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute on Minority Health and Health Disparities, the National Cancer Institute, the National Institutes of Health, or the American Heart Association.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Supplementary material

439_2018_1908_MOESM1_ESM.docx (479 kb)
Supplementary material 1 (DOCX 478 KB)

References

  1. Beaumont RN, Warrington NM, Cavadino A, Tyrrell J, Nodzenski M, Horikoshi M et al (2018) Genome-wide association study of offspring birth weight in 86 577 women identifies five novel loci and highlights maternal genetic effects that are independent of fetal genetics. Hum Mol Genet 27:742–756CrossRefPubMedPubMedCentralGoogle Scholar
  2. Carty CL, Johnson NA, Hutter CM, Reiner AP, Peters U, Tang H et al (2012) Genome-wide association study of body height in African Americans: the Women’s Health Initiative SNP Health Association Resource (SHARe). Hum Mol Genet 21:711–720CrossRefPubMedGoogle Scholar
  3. Cirulli ET, Kasperaviciute D, Attix DK, Need AC, Ge D, Gibson G et al (2010) Common genetic variation and performance on standardized cognitive tests. Eur J Hum Genet 18:815–820CrossRefPubMedPubMedCentralGoogle Scholar
  4. Cozier YC, Palmer JR, Rosenberg L (2004) Comparison of methods for collection of DNA samples by mail in the Black Women’s Health Study. Ann Epidemiol 14:117–122CrossRefPubMedGoogle Scholar
  5. Freathy RM, Mook-Kanamori DO, Sovio U, Prokopenko I, Timpson NJ, Berry DJ et al (2010) Variants in ADCY5 and near CCNL1 are associated with fetal growth and birth weight. Nat Genet 42:430–435CrossRefPubMedPubMedCentralGoogle Scholar
  6. Gamborg M, Byberg L, Rasmussen F, Andersen PK, Baker JL, Bengtsson C et al (2007) Birth weight and systolic blood pressure in adolescence and adulthood: meta-regression analysis of sex- and age-specific results from 20 Nordic studies. Am J Epidemiol 166:634–645CrossRefPubMedGoogle Scholar
  7. Gao X, Starmer J, Martin ER (2008) A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms. Genet Epidemiol 32:361–369CrossRefPubMedGoogle Scholar
  8. Hack M, Klein NK, Taylor HG (1995) Long-term developmental outcomes of low birth weight infants. Future Child 5:176–196CrossRefPubMedGoogle Scholar
  9. Hamilton BE, Martin JA, Osterman MJ, Curtin SC, Matthews TJ (2015) Births: Final Data for 2014. Natl Vital Stat Rep 64:1–64Google Scholar
  10. He M, Xu M, Zhang B, Liang J, Chen P, Lee JY et al (2015) Meta-analysis of genome-wide association studies of adult height in East Asians identifies 17 novel loci. Hum Mol Genet 24:1791–1800CrossRefPubMedGoogle Scholar
  11. Hoggart CJ, Shriver MD, Kittles RA, Clayton DG, McKeigue PM (2004) Design and analysis of admixture mapping studies. Am J Hum Genet 74:965–978CrossRefPubMedPubMedCentralGoogle Scholar
  12. Horikoshi M, Yaghootkar H, Mook-Kanamori DO, Sovio U, Taal HR, Hennig BJ et al (2013) New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism. Nat Genet 45:76–82CrossRefPubMedGoogle Scholar
  13. Horikoshi M, Beaumont RN, Day FR, Warrington NM, Kooijman MN, Fernandez-Tajes J et al (2016) Genome-wide associations for birth weight and correlations with adult disease. Nature 538:248–252CrossRefPubMedPubMedCentralGoogle Scholar
  14. Johnson AD, Newton-Cheh C, Chasman DI, Ehret GB, Johnson T, Rose L et al (2011) Association of hypertension drug target genes with blood pressure and hypertension in 86,588 individuals. Hypertension 57:903–910CrossRefPubMedPubMedCentralGoogle Scholar
  15. Justice AE, Winkler TW, Feitosa MF, Graff M, Fisher VA, Young K et al (2017) Genome-wide meta-analysis of 241,258 adults accounting for smoking behaviour identifies novel loci for obesity traits. Nat Commun 8:14977CrossRefPubMedPubMedCentralGoogle Scholar
  16. Kettunen J, Tukiainen T, Sarin AP, Ortega-Alonso A, Tikkanen E, Lyytikainen LP et al (2012) Genome-wide association study identifies multiple loci influencing human serum metabolite levels. Nat Genet 44:269–276CrossRefPubMedPubMedCentralGoogle Scholar
  17. Mahajan A, Go MJ, Zhang W, Below JE, Gaulton KJ, Ferreira T et al (2014) Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat Genet 46:234–244CrossRefPubMedGoogle Scholar
  18. Marchini J, Howie B, Myers S, McVean G, Donnelly P (2007) A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet 39:906–913CrossRefPubMedGoogle Scholar
  19. Michels KB, Trichopoulos D, Robins JM, Rosner BA, Manson JE, Hunter DJ et al (1996) Birthweight as a risk factor for breast cancer. Lancet 348:1542–1546CrossRefPubMedGoogle Scholar
  20. Morris AP, Voight BF, Teslovich TM, Ferreira T, Segre AV, Steinthorsdottir V et al (2012) Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet 44:981–990CrossRefPubMedPubMedCentralGoogle Scholar
  21. Mottet F, Vardeny O, de Denus S (2016) Pharmacogenomics of heart failure: a systematic review. Pharmacogenomics 17:1817–1858CrossRefPubMedGoogle Scholar
  22. Mu M, Wang SF, Sheng J, Zhao Y, Li HZ, Hu CL et al (2012) Birth weight and subsequent blood pressure: a meta-analysis. Arch Cardiovasc Dis 105:99–113CrossRefPubMedGoogle Scholar
  23. N’Diaye A, Chen GK, Palmer CD, Ge B, Tayo B, Mathias RA et al (2011) Identification, replication, and fine-mapping of Loci associated with adult height in individuals of african ancestry. PLoS Genet 7:e1002298CrossRefPubMedPubMedCentralGoogle Scholar
  24. Nagase T, Ishikawa K, Suyama M, Kikuno R, Hirosawa M, Miyajima N et al (1999) Prediction of the coding sequences of unidentified human genes. XIII. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. DNA Res 6:63–70CrossRefPubMedGoogle Scholar
  25. Ng MC, Shriner D, Chen BH, Li J, Chen WM, Guo X et al (2014) Meta-analysis of genome-wide association studies in African Americans provides insights into the genetic architecture of type 2 diabetes. PLoS Genet 10:e1004517CrossRefPubMedPubMedCentralGoogle Scholar
  26. Risnes KR, Vatten LJ, Baker JL, Jameson K, Sovio U, Kajantie E et al (2011) Birthweight and mortality in adulthood: a systematic review and meta-analysis. Int J Epidemiol 40:647–661CrossRefPubMedGoogle Scholar
  27. Rosenberg L, Adams-Campbell L, Palmer JR (1995) The Black Women’s Health Study: a follow-up study for causes and preventions of illness. J Am Med Womens Assoc (1972) 50:56–58Google Scholar
  28. Ruiz-Narvaez EA, Palmer JR, Gerlovin H, Wise LA, Vimalananda VG, Rosenzweig JL et al (2014) Birth weight and risk of type 2 diabetes in the black women’s health study: does adult BMI play a mediating role? Diabetes Care 37:2572–2578CrossRefPubMedPubMedCentralGoogle Scholar
  29. Sgarra R, Pegoraro S, Ros G, Penzo C, Chiefari E, Foti D et al (2018) High Mobility Group A (HMGA) proteins: molecular instigators of breast cancer onset and progression. Biochim Biophys Acta 1869:216–229PubMedGoogle Scholar
  30. Shungin D, Winkler TW, Croteau-Chonka DC, Ferreira T, Locke AE, Magi R et al (2015) New genetic loci link adipose and insulin biology to body fat distribution. Nature 518:187–196CrossRefPubMedPubMedCentralGoogle Scholar
  31. Soranzo N, Rivadeneira F, Chinappen-Horsley U, Malkina I, Richards JB, Hammond N et al (2009) Meta-analysis of genome-wide scans for human adult stature identifies novel Loci and associations with measures of skeletal frame size. PLoS Genet 5:e1000445CrossRefPubMedPubMedCentralGoogle Scholar
  32. Troy LM, Michels KB, Hunter DJ, Spiegelman D, Manson JE, Colditz GA et al (1996) Self-reported birthweight and history of having been breastfed among younger women: an assessment of validity. Int J Epidemiol 25:122–127CrossRefPubMedGoogle Scholar
  33. Urbanek M, Hayes MG, Armstrong LL, Morrison J, Lowe LP, Badon SE et al (2013) The chromosome 3q25 genomic region is associated with measures of adiposity in newborns in a multi-ethnic genome-wide association study. Hum Mol Genet 22:3583–3596CrossRefPubMedPubMedCentralGoogle Scholar
  34. van der Valk RJ, Kreiner-Moller E, Kooijman MN, Guxens M, Stergiakouli E, Saaf A et al (2015) A novel common variant in DCST2 is associated with length in early life and height in adulthood. Hum Mol Genet 24:1155–1168CrossRefPubMedGoogle Scholar
  35. Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP et al (2010) Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet 42:579–589CrossRefPubMedPubMedCentralGoogle Scholar
  36. Wang H, Liu J, Liu K, Liu Y, Wang Z, Lou Y et al (2013) beta1-adrenoceptor gene Arg389Gly polymorphism and essential hypertension risk in general population: a meta-analysis. Mol Biol Rep 40:4055–4063CrossRefPubMedGoogle Scholar
  37. Warren HR, Evangelou E, Cabrera CP, Gao H, Ren M, Mifsud B et al (2017) Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk. Nat Genet 49:403–415CrossRefPubMedPubMedCentralGoogle Scholar
  38. Weedon MN, Lettre G, Freathy RM, Lindgren CM, Voight BF, Perry JR et al (2007) A common variant of HMGA2 is associated with adult and childhood height in the general population. Nat Genet 39:1245–1250CrossRefPubMedPubMedCentralGoogle Scholar
  39. Whincup PH, Kaye SJ, Owen CG, Huxley R, Cook DG, Anazawa S et al (2008) Birth weight and risk of type 2 diabetes: a systematic review. JAMA 300:2886–2897CrossRefPubMedGoogle Scholar
  40. Zhao W, Rasheed A, Tikkanen E, Lee JJ, Butterworth AS, Howson JMM et al (2017) Identification of new susceptibility loci for type 2 diabetes and shared etiological pathways with coronary heart disease. Nat Genet 49:1450–1457CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Heather M. Ochs-Balcom
    • 1
  • Holly Shaw
    • 1
  • Leah Preus
    • 1
  • Julie R. Palmer
    • 2
  • Stephen A. Haddad
    • 2
  • Lynn Rosenberg
    • 2
  • Edward A. Ruiz-Narváez
    • 3
  1. 1.Department of Epidemiology and Environmental Health, School of Public Health and Health ProfessionsUniversity at BuffaloBuffaloUSA
  2. 2.Slone Epidemiology CenterBoston UniversityBostonUSA
  3. 3.Department of Nutritional SciencesUniversity of Michigan School of Public HealthAnn ArborUSA

Personalised recommendations