Advertisement

Human Genetics

, Volume 137, Issue 6–7, pp 511–520 | Cite as

Extreme clustering of type-1 NF1 deletion breakpoints co-locating with G-quadruplex forming sequences

  • Anna Summerer
  • Victor-Felix Mautner
  • Meena Upadhyaya
  • Kathleen B. M. Claes
  • Josef Högel
  • David N. Cooper
  • Ludwine Messiaen
  • Hildegard Kehrer-Sawatzki
Original Investigation
  • 141 Downloads

Abstract

The breakpoints of type-1 NF1 deletions encompassing 1.4-Mb are located within NF1-REPa and NF1-REPc, which exhibit a complex structure comprising different segmental duplications in direct and inverted orientation. Here, we systematically assessed the proportion of type-1 NF1 deletions caused by nonallelic homologous recombination (NAHR) and those mediated by other mutational mechanisms. To this end, we analyzed 236 unselected type-1 deletions and observed that 179 of them (75.8%) had breakpoints located within the NAHR hotspot PRS2, whereas 39 deletions (16.5%) had breakpoints located within PRS1. Sixteen deletions exhibited breakpoints located outside of these NAHR hotspots but were also mediated by NAHR. Taken together, the breakpoints of 234 (99.2%) of the 236 type-1 NF1 deletions were mediated by NAHR. Thus, NF1-REPa and NF1-REPc are strongly predisposed to recurrent NAHR, the main mechanism underlying type-1 NF1 deletions. We also observed a non-random overlap between type-1 NF1-deletion breakpoints and G-quadruplex forming sequences (GQs) as well as regions flanking PRDM9A binding-sites. These findings imply that GQs and PRDM9A binding-sites contribute to the clustering of type-1 deletion breakpoints. The co-location of both types of sequence was at its highest within PRS2, indicative of their synergistic contribution to the greatly increased NAHR activity within this hotspot.

Notes

Acknowledgements

This work has been funded by the Deutsche Forschungsgemeinschaft (DFG) Grant KE 724/12-2.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary material

439_2018_1904_MOESM1_ESM.pdf (3.4 mb)
Supplementary material 1 (PDF 3502 KB)

References

  1. Anuradha S, Muniyappa K (2004) Meiosis-specific yeast Hop1 protein promotes synapsis of double-stranded DNA helices via the formation of guanine quartets. Nucleic Acids Res 32:2378–2385CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bagshaw AT, Pitt JP, Gemmell NJ (2006) Association of poly-purine/poly-pyrimidine sequences with meiotic recombination hot spots. BMC Genomics 7:179CrossRefPubMedPubMedCentralGoogle Scholar
  3. Baker CL, Walker M, Kajita S, Petkov PM, Paigen K (2014) PRDM9 binding organizes hotspot nucleosomes and limits Holliday junction migration. Genome Res 24:724–732CrossRefPubMedPubMedCentralGoogle Scholar
  4. Baudat F, Buard J, Grey C, Fledel-Alon A, Ober C, Przeworski M, Coop G, de Massy B (2010) PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice. Science 327:836–840CrossRefPubMedGoogle Scholar
  5. Bengesser K, Cooper DN, Steinmann K, Kluwe L, Chuzhanova NA, Wimmer K, Tatagiba M, Tinschert S, Mautner VF, Kehrer-Sawatzki H (2010) A novel third type of recurrent NF1 microdeletion mediated by nonallelic homologous recombination between LRRC37B-containing low-copy repeats in 17q11.2. Hum Mutat 31:742–751CrossRefPubMedGoogle Scholar
  6. Bengesser K, Vogt J, Mussotter T, Mautner VF, Messiaen L, Cooper DN, Kehrer-Sawatzki H (2014) Analysis of crossover breakpoints yields new insights into the nature of the gene conversion events associated with large NF1 deletions mediated by nonallelic homologous recombination. Hum Mutat 35:215–226CrossRefPubMedGoogle Scholar
  7. Berg IL, Neumann R, Lam KW, Sarbajna S, Odenthal-Hesse L, May CA, Jeffreys AJ (2010) PRDM9 variation strongly influences recombination hot-spot activity and meiotic instability in humans. Nat Genet 42:859–863CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bochman ML, Paeschke K, Zakian VA (2012) DNA secondary structures: stability and function of G-quadruplex structures. Nat Rev Genet 13:770–780CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bose P, Hermetz KE, Conneely KN, Rudd MK (2014) Tandem repeats and G-rich sequences are enriched at human CNV breakpoints. PLoS One 9:e101607CrossRefPubMedPubMedCentralGoogle Scholar
  10. Capra JA, Paeschke K, Singh M, Zakian VA (2010) G-quadruplex DNA sequences are evolutionarily conserved and associated with distinct genomic features in Saccharomyces cerevisiae. PLoS Comput Biol 6:e1000861CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cer RZ, Donohue DE, Mudunuri US, Temiz NA, Loss MA, Starner NJ, Halusa GN, Volfovsky N, Yi M, Luke BT, Bacolla A, Collins JR, Stephens RM (2013) Non-B DB v2.0: a database of predicted non-B DNA-forming motifs and its associated tools. Nucleic Acids Res 41:D94–D100CrossRefPubMedGoogle Scholar
  12. Chance PF, Abbas N, Lensch MW, Pentao L, Roa BB, Patel PI, Lupski JR (1994) Two autosomal dominant neuropathies result from reciprocal DNA duplication/deletion of a region on chromosome 17. Hum Mol Genet 3:223–228CrossRefPubMedGoogle Scholar
  13. De Raedt T, Stephens M, Heyns I, Brems H, Thijs D, Messiaen L, Stephens K, Lazaro C, Wimmer K, Kehrer-Sawatzki H, Vidaud D, Kluwe L, Marynen P, Legius E (2006) Conservation of hotspots for recombination in low-copy repeats associated with the NF1 microdeletion. Nat Genet 38:1419–1423CrossRefPubMedGoogle Scholar
  14. Dhapola P, Chowdhury S (2016) QuadBase2: web server for multiplexed guanine quadruplex mining and visualization. Nucleic Acids Res 44:W277–W283CrossRefPubMedPubMedCentralGoogle Scholar
  15. Dittwald P, Gambin T, Szafranski P, Li J, Amato S, Divon MY, Rodríguez Rojas LX, Elton LE, Scott DA, Schaaf CP, Torres-Martinez W, Stevens AK, Rosenfeld JA, Agadi S, Francis D, Kang SH, Breman A, Lalani SR, Bacino CA, Bi W, Milosavljevic A, Beaudet AL, Patel A, Shaw CA, Lupski JR, Gambin A, Cheung SW, Stankiewicz P (2013) NAHR-mediated copy-number variants in a clinical population: mechanistic insights into both genomic disorders and mendelizing traits. Genome Res 23:1395–1409CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dorschner MO, Sybert VP, Weaver M, Pletcher BA, Stephens K (2000) NF1 microdeletion breakpoints are clustered at flanking repetitive sequences. Hum Mol Genet 9:35–46CrossRefPubMedGoogle Scholar
  17. Forbes SH, Dorschner MO, Le R, Stephens K (2004) Genomic context of paralogous recombination hotspots mediating recurrent NF1 region microdeletion. Genes Chromosomes Cancer 41:12–25CrossRefPubMedGoogle Scholar
  18. Fullerton SM, Bernardo Carvalho A, Clark AG (2001) Local rates of recombination are positively correlated with GC content in the human genome. Mol Biol Evol 18:1139–1142CrossRefPubMedGoogle Scholar
  19. Gerton JL, DeRisi J, Shroff R, Lichten M, Brown PO, Petes TD (2000) Global mapping of meiotic recombination hotspots and coldspots in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA 97:11383–11390CrossRefPubMedGoogle Scholar
  20. Grant CE, Bailey TL, Noble WS (2011) FIMO: scanning for occurrences of a given motif. Bioinformatics 27:1017–1018CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hansen L, Kim NK, Mariño-Ramírez L, Landsman D (2011) Analysis of biological features associated with meiotic recombination hot and cold spots in Saccharomyces cerevisiae. PLoS One 6:e29711CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hillmer M, Wagner D, Summerer A, Daiber M, Mautner VF, Messiaen L, Cooper DN, Kehrer-Sawatzki H (2016) Fine mapping of meiotic NAHR-associated crossovers causing large NF1 deletions. Hum Mol Genet 25:484–496CrossRefPubMedGoogle Scholar
  23. Hillmer M, Summerer A, Mautner VF, Högel J, Cooper DN, Kehrer-Sawatzki H (2017) Consideration of the haplotype diversity at nonallelic homologous recombination hotspots improves the precision of rearrangement breakpoint identification. Hum Mutat 38:1711–1722CrossRefPubMedGoogle Scholar
  24. Huppert JL, Balasubramanian S (2005) Prevalence of quadruplexes in the human genome. Nucleic Acids Res 33:2908–2916CrossRefPubMedPubMedCentralGoogle Scholar
  25. Jenne DE, Tinschert S, Reimann H, Lasinger W, Thiel G, Hameister H, Kehrer-Sawatzki H (2001) Molecular characterization and gene content of breakpoint boundaries in patients with neurofibromatosis type 1 with 17q11.2 microdeletions. Am J Hum Genet 69:516–527CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kehrer-Sawatzki H, Kluwe L, Sandig C, Kohn M, Wimmer K, Krammer U, Peyrl A, Jenne DE, Hansmann I, Mautner VF (2004) High frequency of mosaicism among patients with neurofibromatosis type 1 (NF1) with microdeletions caused by somatic recombination of the JJAZ1 gene. Am J Hum Genet 75:410–423CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kehrer-Sawatzki H, Mautner VF, Cooper DN (2017) Emerging genotype–phenotype relationships in patients with large NF1 deletions. Hum Genet 136:349–376CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kruisselbrink E, Guryev V, Brouwer K, Pontier DB, Cuppen E, Tijsterman M (2008) Mutagenic capacity of endogenous G4 DNA underlies genome instability in FANCJ-defective C. elegans. Curr Biol 18:900–905CrossRefPubMedGoogle Scholar
  29. Kshirsagar R, Khan K, Joshi MV, Hosur RV, Muniyappa K (2017) Probing the potential role of non-B DNA structures at yeast meiosis-specific DNA double-strand breaks. Biophys J 112:2056–2074CrossRefPubMedPubMedCentralGoogle Scholar
  30. Liu P, Lacaria M, Zhang F, Withers M, Hastings PJ, Lupski JR (2011) Frequency of nonallelic homologous recombination is correlated with length of homology: evidence that ectopic synapsis precedes ectopic crossing-over. Am J Hum Genet 89:580–588CrossRefPubMedPubMedCentralGoogle Scholar
  31. Lopes J, Ravisé N, Vandenberghe A, Palau F, Ionasescu V, Mayer M, Lévy N, Wood N, Tachi N, Bouche P, Latour P, Ruberg M, Brice A, LeGuern E (1998) Fine mapping of de novo CMT1A and HNPP rearrangements within CMT1A-REPs evidences two distinct sex-dependent mechanisms and candidate sequences involved in recombination. Hum Mol Genet 7:141–148CrossRefPubMedGoogle Scholar
  32. López-Correa C, Brems H, Lázaro C, Marynen P, Legius E (2000) Unequal meiotic crossover: a frequent cause of NF1 microdeletions. Am J Hum Genet 66:1969–1974CrossRefPubMedPubMedCentralGoogle Scholar
  33. López-Correa C, Dorschner M, Brems H, Lázaro C, Clementi M, Upadhyaya M, Dooijes D, Moog U, Kehrer-Sawatzki H, Rutkowski JL, Fryns JP, Marynen P, Stephens K, Legius E (2001) Recombination hotspot in NF1 microdeletion patients. Hum Mol Genet 10:1387–1392CrossRefPubMedGoogle Scholar
  34. Lupski JR (2004) Hotspots of homologous recombination in the human genome: not all homologous sequences are equal. Genome Biol 5:242CrossRefPubMedPubMedCentralGoogle Scholar
  35. Mautner VF, Kluwe L, Friedrich RE, Roehl AC, Bammert S, Högel J, Spöri H, Cooper DN, Kehrer-Sawatzki H (2010) Clinical characterisation of 29 neurofibromatosis type-1 patients with molecularly ascertained 1.4 Mb type-1 NF1 deletions. J Med Genet 47:623–630CrossRefPubMedGoogle Scholar
  36. McDonald KR, Guise AJ, Pourbozorgi-Langroudi P, Cristea IM, Zakian VA, Capra JA, Sabouri N (2016) Pfh1 is an accessory replicative helicase that interacts with the replisome to facilitate fork progression and preserve genome integrity. PLoS Genet 12:e1006238CrossRefPubMedPubMedCentralGoogle Scholar
  37. Messiaen L, Vogt J, Bengesser K, Fu C, Mikhail F, Serra E, Garcia-Linares C, Cooper DN, Lazaro C, Kehrer-Sawatzki H (2011) Mosaic type-1 NF1 microdeletions as a cause of both generalized and segmental neurofibromatosis type-1 (NF1). Hum Mutat 32:213–219CrossRefPubMedGoogle Scholar
  38. Muniyappa K, Anuradha S, Byers B (2000) Yeast meiosis-specific protein Hop1 binds to G4 DNA and promotes its formation. Mol Cell Biol 20:1361–1369CrossRefPubMedPubMedCentralGoogle Scholar
  39. Myers S, Freeman C, Auton A, Donnelly P, McVean G (2008) A common sequence motif associated with recombination hot spots and genome instability in humans. Nat Genet 40:1124–1129CrossRefPubMedGoogle Scholar
  40. Neuhäusler L, Summerer A, Cooper DN, Mautner V-F, Kehrer-Sawatzki H (2018) Pronounced maternal parent-of-origin bias for type-1 NF1 microdeletions. Hum Genet 137:365–373CrossRefPubMedGoogle Scholar
  41. Paigen K, Petkov PM (2018) PRDM9 and its role in genetic recombination. Trends Genet 34:291–300CrossRefPubMedGoogle Scholar
  42. Pasmant E, Sabbagh A, Spurlock G, Laurendeau I, Grillo E, Hamel MJ, Martin L, Barbarot S, Leheup B, Rodriguez D, Lacombe D, Dollfus H, Pasquier L, Isidor B, Ferkal S, Soulier J, Sanson M, Dieux-Coeslier A, Bièche I, Parfait B, Vidaud M, Wolkenstein P, Upadhyaya M, Vidaud D, Members of the NF France Network (2010) NF1 microdeletions in neurofibromatosis type 1: from genotype to phenotype. Hum Mutat 31:E1506–E1518CrossRefPubMedGoogle Scholar
  43. Patel A, Horton JR, Wilson GG, Zhang X, Cheng X (2016) Structural basis for human PRDM9 action at recombination hot spots. Genes Dev 30:257–265CrossRefPubMedPubMedCentralGoogle Scholar
  44. Pratto F, Brick K, Khil P, Smagulova F, Petukhova GV, Camerini-Otero RD (2014) Recombination initiation maps of individual human genomes. Science 346:1256442CrossRefPubMedPubMedCentralGoogle Scholar
  45. Rhodes D, Lipps HJ (2015) G-quadruplexes and their regulatory roles in biology. Nucleic Acids Res 43:8627–8637CrossRefPubMedPubMedCentralGoogle Scholar
  46. Ribeyre C, Lopes J, Boulé JB, Piazza A, Guédin A, Zakian VA, Mergny JL, Nicolas A (2009) The yeast Pif1 helicase prevents genomic instability caused by G-quadruplex-forming CEB1 sequences in vivo. PLoS Genet 5:e1000475CrossRefPubMedPubMedCentralGoogle Scholar
  47. Roehl AC, Vogt J, Mussotter T, Zickler AN, Spöti H, Högel J, Chuzhanova NA, Wimmer K, Kluwe L, Mautner VF, Cooper DN, Kehrer-Sawatzki H (2010) Intrachromosomal mitotic nonallelic homologous recombination is the major molecular mechanism underlying type-2 NF1 deletions. Hum Mutat 31:1163–1173CrossRefPubMedGoogle Scholar
  48. Steinmann K, Cooper DN, Kluwe L, Chuzhanova NA, Senger C, Serra E, Lazaro C, Gilaberte M, Wimmer K, Mautner VF, Kehrer-Sawatzki H (2007) Type 2 NF1 deletions are highly unusual by virtue of the absence of nonallelic homologous recombination hotspots and an apparent preference for female mitotic recombination. Am J Hum Genet 81:1201–1220CrossRefPubMedPubMedCentralGoogle Scholar
  49. Turner DJ, Miretti M, Rajan D, Fiegler H, Carter NP, Blayney ML, Beck S, Hurles ME (2008) Germline rates of de novo meiotic deletions and duplications causing several genomic disorders. Nat Genet 40:90–95CrossRefPubMedGoogle Scholar
  50. van Kregten M, Tijsterman M (2014) The repair of G-quadruplex-induced DNA damage. Exp Cell Res 329:178–183CrossRefPubMedGoogle Scholar
  51. Vogt J, Mussotter T, Bengesser K, Claes K, Högel J, Chuzhanova N, Fu C, van den Ende J, Mautner VF, Cooper DN, Messiaen L, Kehrer-Sawatzki H (2012) Identification of recurrent type-2 NF1 microdeletions reveals a mitotic nonallelic homologous recombination hotspot underlying a human genomic disorder. Hum Mutat 33:1599–1609CrossRefPubMedGoogle Scholar
  52. Vogt J, Bengesser K, Claes KB, Wimmer K, Mautner VF, van Minkelen R, Legius E, Brems H, Upadhyaya M, Högel J, Lazaro C, Rosenbaum T, Bammert S, Messiaen L, Cooper DN, Kehrer-Sawatzki H (2014) SVA retrotransposon insertion-associated deletion represents a novel mutational mechanism underlying large genomic copy number changes with non-recurrent breakpoints. Genome Biol 15:R80CrossRefPubMedPubMedCentralGoogle Scholar
  53. Wanzek K, Schwindt E, Capra JA, Paeschke K (2017) Mms1 binds to G-rich regions in Saccharomyces cerevisiae and influences replication and genome stability. Nucleic Acids Res 45:7796–7806CrossRefPubMedPubMedCentralGoogle Scholar
  54. Zickler AM, Hampp S, Messiaen L, Bengesser K, Mussotter T, Roehl AC, Wimmer K, Mautner VF, Kluwe L, Upadhyaya M, Pasmant E, Chuzhanova N, Kestler HA, Högel J, Legius E, Claes K, Cooper DN, Kehrer-Sawatzki H (2012) Characterization of the nonallelic homologous recombination hotspot PRS3 associated with type-3 NF1 deletions. Hum Mutat 33:372–383CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Human GeneticsUniversity of UlmUlmGermany
  2. 2.Department of NeurologyUniversity Hospital Hamburg EppendorfHamburgGermany
  3. 3.Institute of Medical Genetics, School of MedicineCardiff UniversityCardiffUK
  4. 4.Center for Medical Genetics GhentGhent University HospitalGhentBelgium
  5. 5.Department of GeneticsUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations