Advertisement

Human Genetics

, Volume 137, Issue 6–7, pp 447–458 | Cite as

IFT88 mutations identified in individuals with non-syndromic recessive retinal degeneration result in abnormal ciliogenesis

  • Anil Chekuri
  • Aditya A. Guru
  • Pooja Biswas
  • Kari Branham
  • Shyamanga Borooah
  • Angel Soto-Hermida
  • Michael Hicks
  • Naheed W. Khan
  • Hiroko Matsui
  • Akhila Alapati
  • Pongali B. Raghavendra
  • Susanne Roosing
  • Sripriya Sarangapani
  • Sinnakaruppan Mathavan
  • Amalio Telenti
  • John R. Heckenlively
  • S. Amer Riazuddin
  • Kelly A. Frazer
  • Paul A. Sieving
  • Radha AyyagariEmail author
Original Investigation

Abstract

Whole genome sequencing (WGS) was performed to identify the variants responsible for inherited retinal degeneration (IRD) in a Caucasian family. Segregation analysis of selected rare variants with pathogenic potential identified a set of compound heterozygous changes p.Arg266*:c.796C>T and p.Ala568Thr:c.1702G>A in the intraflagellar transport protein-88 (IFT88) gene segregating with IRD. Expression of IFT88 with the p.Arg266* and p.Ala568Thr mutations in mIMDC3 cells by transient transfection and in HeLa cells by introducing the mutations using CRISPR-cas9 system suggested that both mutations result in the formation of abnormal ciliary structures. The introduction of the IFT88 p.Arg266* variant in the homozygous state in HeLa cells by CRISPR-Cas9 genome-editing revealed that the mutant transcript undergoes nonsense-mediated decay leading to a significant depletion of IFT88 transcript. Additionally, abnormal ciliogenesis was observed in these cells. These observations suggest that the rare and unique combination of IFT88 alleles observed in this study provide insight into the physiological role of IFT88 in humans and the likely mechanism underlying retinal pathology in the pedigree with IRD.

Notes

Acknowledgements

We are grateful to Dr. Frans PM Cremers, Department of Human Genetics, Radboud University Nijmegen Medical Center, for screening his collection of IRD patients for mutations in the IFT88 gene.

Funding

The Foundation Fighting Blindness, Research to Prevent Blindness, NIH-EY21237, P30-EY22589. Shyamanga Borooah was funded by a Fulbright-Fight For Sight Scholarship and Global Ophthalmology Awards Program Fellowship award.

Compliance with ethical standards

Conflict of interest

Authors declare that there is no conflict of interest.

Supplementary material

439_2018_1897_MOESM1_ESM.docx (1.7 mb)
Supplementary material 1 (DOCX 1731 KB)

References

  1. Adzhubei I, Jordan DM, Sunyaev SR (2013) Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet 7:20.  https://doi.org/10.1002/0471142905.hg0720s76 PubMedCrossRefGoogle Scholar
  2. Badano JL, Mitsuma N, Beales PL, Katsanis N (2006) The ciliopathies: an emerging class of human genetic disorders. Annu Rev Genomics Hum Genet 7:125–148.  https://doi.org/10.1146/annurev.genom.7.080505.115610 CrossRefPubMedGoogle Scholar
  3. Bhogaraju S, Engel BD, Lorentzen E (2013) Intraflagellar transport complex structure and cargo interactions. Cilia 2:10.  https://doi.org/10.1186/2046-2530-2-10 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bisgrove BW, Yost HJ (2006) The roles of cilia in developmental disorders and disease. Development 133:4131–4143.  https://doi.org/10.1242/dev.02595 CrossRefPubMedGoogle Scholar
  5. Biswas P et al (2016) A missense mutation in ASRGL1 is involved in causing autosomal recessive retinal degeneration. Hum Mol Genet 25:2483–2497.  https://doi.org/10.1093/hmg/ddw113 PubMedCrossRefPubMedCentralGoogle Scholar
  6. Biswas P et al (2017) A mutation in IFT43 causes non-syndromic recessive retinal degeneration. Hum Mol Genet 26:4741–4751.  https://doi.org/10.1093/hmg/ddx356 CrossRefPubMedGoogle Scholar
  7. Boehlke C et al (2015) A cilia independent role of Ift88/polaris during cell migration. PLoS One 10:e0140378.  https://doi.org/10.1371/journal.pone.0140378 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Branham K et al (2016) Establishing the involvement of the novel gene AGBL5 in retinitis pigmentosa by whole genome sequencing. Phys Genom 48:922–927.  https://doi.org/10.1152/physiolgenomics.00101.2016 CrossRefGoogle Scholar
  9. Bujakowska KM et al (2015) Mutations in IFT172 cause isolated retinal degeneration and Bardet-Biedl syndrome. Hum Mol Genet 24:230–242.  https://doi.org/10.1093/hmg/ddu441 CrossRefPubMedGoogle Scholar
  10. Cardenas-Rodriguez M, Badano JL (2009) Ciliary biology: understanding the cellular and genetic basis of human ciliopathies. Am J Med Genet C Semin Med Genet 151C:263–280.  https://doi.org/10.1002/ajmg.c.30227 CrossRefPubMedGoogle Scholar
  11. Chang CF, Serra R (2013) Ift88 regulates Hedgehog signaling, Sfrp5 expression, and beta-catenin activity in post-natal growth plate. J Orthop Res 31:350–356.  https://doi.org/10.1002/jor.22237 CrossRefPubMedGoogle Scholar
  12. Delaval B, Bright A, Lawson ND, Doxsey S (2011) The cilia protein IFT88 is required for spindle orientation in mitosis. Nat Cell Biol 13:461–468.  https://doi.org/10.1038/ncb2202 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dharmat R et al (2017) IFT81 as a candidate gene for nonsyndromic retinal degeneration invest. Ophthalmol Vis Sci 58:2483–2490.  https://doi.org/10.1167/iovs.16-19133 CrossRefGoogle Scholar
  14. Doench JG et al (2016) Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol 34:184–191.  https://doi.org/10.1038/nbt.3437 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Durand S et al (2007) Inhibition of nonsense-mediated mRNA decay (NMD) by a new chemical molecule reveals the dynamic of NMD factors in P-bodies. J Cell Biol 178:1145–1160.  https://doi.org/10.1083/jcb.200611086 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Ferrucci S, Anderson SF, Townsend JC (1998) Retinitis pigmentosa inversa Optom. Vis Sci 75:560–570CrossRefGoogle Scholar
  17. Gustafson K et al (2017) Whole genome sequencing revealed mutations in two independent genes as the underlying cause of retinal degeneration in an Ashkenazi Jewish pedigree. Genes (Basel) 8:210.  https://doi.org/10.3390/genes8090210 CrossRefGoogle Scholar
  18. Halbert SA, Patton DL, Zarutskie PW, Soules MR (1997) Function and structure of cilia in the fallopian tube of an infertile woman with Kartagener’s syndrome. Hum Reprod 12:55–58CrossRefPubMedGoogle Scholar
  19. Hartong DT, Berson EL, Dryja TP (2006) Retinitis pigmentosa. Lancet 368:1795–1809.  https://doi.org/10.1016/S0140-6736(06)69740-7 CrossRefPubMedGoogle Scholar
  20. Hsu PD et al (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31:827–832.  https://doi.org/10.1038/nbt.2647 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hu J, Ng PC (2013) SIFT Indel: predictions for the functional effects of amino acid insertions/deletions in proteins. PLoS One 8:e77940.  https://doi.org/10.1371/journal.pone.0077940 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Katoh Y, Michisaka S, Nozaki S, Funabashi T, Hirano T, Takei R, Nakayama K (2017) Practical method for targeted disruption of cilia-related genes by using CRISPR/Cas9-mediated, homology-independent knock-in system. Mol Biol Cell 28:898–906.  https://doi.org/10.1091/mbc.E17-01-0051 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Khanna H (2015) Photoreceptor sensory cilium traversing the ciliary gate. Cells 4:674–686.  https://doi.org/10.3390/cells4040674 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kim S, Tsiokas L (2011) Cilia and cell cycle re-entry: more than a coincidence. Cell Cycle 10:2683–2690.  https://doi.org/10.4161/cc.10.16.17009 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Lehman JM, Michaud EJ, Schoeb TR, Aydin-Son Y, Miller M, Yoder BK (2008) The Oak ridge polycystic kidney mouse: modeling ciliopathies of mice and men. Dev Dyn 237:1960–1971.  https://doi.org/10.1002/dvdy.21515 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760.  https://doi.org/10.1093/bioinformatics/btp324 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Liu Q, Zhang Q, Pierce EA (2010) Photoreceptor sensory cilia and inherited retinal degeneration. Adv Exp Med Biol 664:223–232.  https://doi.org/10.1007/978-1-4419-1399-9_26 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Marshall WF, Nonaka S (2006) Cilia: tuning in to the cell’s antenna. Curr Biol 16:R604–R614.  https://doi.org/10.1016/j.cub.2006.07.012 CrossRefPubMedGoogle Scholar
  29. McIntyre JC et al (2012) Gene therapy rescues cilia defects and restores olfactory function in a mammalian ciliopathy model. Nat Med 18:1423–1428.  https://doi.org/10.1038/nm.2860 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Mizuno N, Taschner M, Engel BD, Lorentzen E (2012) Structural studies of ciliary components. J Mol Biol 422:163–180.  https://doi.org/10.1016/j.jmb.2012.05.040 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Moyer JH et al (1994) Candidate gene associated with a mutation causing recessive polycystic kidney disease in mice. Science 264:1329–1333CrossRefPubMedGoogle Scholar
  32. Murcia NS, Richards WG, Yoder BK, Mucenski ML, Dunlap JR, Woychik RP (2000) The Oak Ridge Polycystic Kidney (orpk) disease gene is required for left-right axis determination. Development 127:2347–2355PubMedGoogle Scholar
  33. Pazour GJ, Rosenbaum JL (2002) Intraflagellar transport and cilia-dependent diseases. Trends Cell Biol 12:551–555CrossRefPubMedGoogle Scholar
  34. Pazour GJ, Dickert BL, Vucica Y, Seeley ES, Rosenbaum JL, Witman GB, Cole DG (2000) Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J Cell Biol 151:709–718CrossRefPubMedPubMedCentralGoogle Scholar
  35. Pazour GJ et al (2002) The intraflagellar transport protein, IFT88, is essential for vertebrate photoreceptor assembly and maintenance. J Cell Biol 157:103–113.  https://doi.org/10.1083/jcb.200107108 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Robert A, Margall-Ducos G, Guidotti JE, Bregerie O, Celati C, Brechot C, Desdouets C (2007) The intraflagellar transport component IFT88/polaris is a centrosomal protein regulating G1-S transition in non-ciliated cells. J Cell Sci 120:628–637.  https://doi.org/10.1242/jcs.03366 CrossRefPubMedGoogle Scholar
  37. Rosenbaum J (2002) Intraflagellar transport. Curr Biol 12:R125CrossRefPubMedGoogle Scholar
  38. Rosenbaum JL, Witman GB (2002) Intraflagellar transport. Nat Rev Mol Cell Biol 3:813–825.  https://doi.org/10.1038/nrm952 CrossRefPubMedGoogle Scholar
  39. Sandberg MA, Gaudio AR, Berson EL (2005) Disease course of patients with pericentral retinitis pigmentosa. Am J Ophthalmol 140:100–106.  https://doi.org/10.1016/j.ajo.2005.02.038 CrossRefPubMedGoogle Scholar
  40. Tian H et al (2017) Intraflagellar transport 88 (IFT88) is crucial for craniofacial development in mice and is a candidate gene for human cleft lip and palate. Hum Mol Genet 26:860–872.  https://doi.org/10.1093/hmg/ddx002 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Waters AM, Beales PL (2011) Ciliopathies: an expanding disease spectrum. Pediatr Nephrol 26:1039–1056.  https://doi.org/10.1007/s00467-010-1731-7 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Wheway G, Parry DA, Johnson CA (2014) The role of primary cilia in the development and disease of the retina. Organogenesis 10:69–85.  https://doi.org/10.4161/org.26710 CrossRefPubMedGoogle Scholar
  43. Xu M et al (2015) Mutations in human IFT140 cause non-syndromic retinal degeneration. Hum Genet 134:1069–1078.  https://doi.org/10.1007/s00439-015-1586-x CrossRefPubMedPubMedCentralGoogle Scholar
  44. Yoder BK (2007) Role of primary cilia in the pathogenesis of polycystic kidney disease. J Am Soc Nephrol 18:1381–1388.  https://doi.org/10.1681/ASN.2006111215 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Anil Chekuri
    • 1
  • Aditya A. Guru
    • 1
  • Pooja Biswas
    • 1
    • 2
  • Kari Branham
    • 3
  • Shyamanga Borooah
    • 1
  • Angel Soto-Hermida
    • 1
  • Michael Hicks
    • 4
  • Naheed W. Khan
    • 3
  • Hiroko Matsui
    • 5
  • Akhila Alapati
    • 1
  • Pongali B. Raghavendra
    • 2
    • 6
  • Susanne Roosing
    • 7
  • Sripriya Sarangapani
    • 8
  • Sinnakaruppan Mathavan
    • 8
  • Amalio Telenti
    • 4
  • John R. Heckenlively
    • 3
  • S. Amer Riazuddin
    • 9
  • Kelly A. Frazer
    • 5
    • 10
  • Paul A. Sieving
    • 11
  • Radha Ayyagari
    • 1
    Email author
  1. 1.Shiley Eye InstituteUniversity of California San DiegoLa JollaUSA
  2. 2.School of BiotechnologyREVA UniversityBengaluruIndia
  3. 3.Ophthalmology and Visual ScienceUniversity of Michigan Kellogg Eye CenterAnn ArborUSA
  4. 4.Human Longevity, Inc.San DiegoUSA
  5. 5.Institute for Genomic MedicineUniversity of California San DiegoLa JollaUSA
  6. 6.School of Regenerative MedicineManipal University-MAHEBangaloreIndia
  7. 7.Department of Human GeneticsRadboud University Nijmegen Medical CenterNijmegenThe Netherlands
  8. 8.Vision Research Foundation, Sankara NethralayaChennaiIndia
  9. 9.The Wilmer Eye InstituteJohns Hopkins University School of MedicineBaltimoreUSA
  10. 10.Division of Genome Information Sciences, Department of PediatricsRady Children’s HospitalSan DiegoUSA
  11. 11.National Eye Institute, National Institutes of HealthBethesdaUSA

Personalised recommendations