Human Genetics

, Volume 136, Issue 11–12, pp 1455–1461 | Cite as

Mutations of PTPN23 in developmental and epileptic encephalopathy

  • Nadine Sowada
  • Mais Omar Hashem
  • Rüstem Yilmaz
  • Muddathir Hamad
  • Naseebullah Kakar
  • Holger Thiele
  • Stefan T. Arold
  • Harald Bode
  • Fowzan S. Alkuraya
  • Guntram BorckEmail author
Original Investigation


Developmental and epileptic encephalopathies (DEE) are a heterogeneous group of neurodevelopmental disorders with poor prognosis. Recent discoveries have greatly expanded the repertoire of genes that are mutated in epileptic encephalopathies and DEE, often in a de novo fashion, but in many patients, the disease remains molecularly uncharacterized. Here, we describe a new form of DEE in patients with likely deleterious biallelic variants in PTPN23. The phenotype is characterized by early onset drug-resistant epilepsy, severe and global developmental delay, microcephaly, and sometimes premature death. PTPN23 encodes a tyrosine phosphatase with strong brain expression, and its knockout in mouse is embryonically lethal. Structural modeling supports a deleterious effect of the identified alleles. Our data suggest that PTPN23 mutations cause a rare severe form of autosomal-recessive DEE in humans, a finding that requires confirmation.



We thank the families for their participation in this research project. The research by STA reported in this publication was supported by funding from King Abdullah University of Science and Technology (KAUST). The exome analysis was performed on CHEOPS, a high performance computer cluster of the regional data center of the University of Cologne (RRZK), funded by the Deutsche Forschungsgemeinschaft (DFG). We acknowledge the support of the Saudi Human Genome Program.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary material

439_2017_1850_MOESM1_ESM.pptx (58 kb)
Supplementary material 1 (PPTX 57 kb)
439_2017_1850_MOESM2_ESM.docx (15 kb)
Supplementary material 2 (DOCX 15 kb)


  1. Alazami AM, Patel N, Shamseldin HE et al (2015) Accelerating novel candidate gene discovery in neurogenetic disorders via whole-exome sequencing of prescreened multiplex consanguineous families. Cell Rep 10:148–161CrossRefPubMedGoogle Scholar
  2. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinform Oxf Engl 22:195–201CrossRefGoogle Scholar
  3. Doyotte A, Mironov A, McKenzie E, Woodman P (2008) The Bro1-related protein HD-PTP/PTPN23 is required for endosomal cargo sorting and multivesicular body morphogenesis. Proc Natl Acad Sci USA 105:6308–6313CrossRefPubMedPubMedCentralGoogle Scholar
  4. Gahloth D, Levy C, Heaven G et al (1993) Structural basis for selective interaction between the ESCRT regulator HD-PTP and UBAP1. Struct Lond Engl 2016(24):2115–2126Google Scholar
  5. Germain B, Maria BL (2017) Epileptic encephalopathies. J Child Neurol: 883073817697846Google Scholar
  6. Gingras M-C, Zhang YL, Kharitidi D et al (2009a) HD-PTP is a catalytically inactive tyrosine phosphatase due to a conserved divergence in its phosphatase domain. PLoS One 4:e5105CrossRefPubMedPubMedCentralGoogle Scholar
  7. Gingras M-C, Kharitidi D, Chénard V et al (2009b) Expression analysis and essential role of the putative tyrosine phosphatase His-domain-containing protein tyrosine phosphatase (HD-PTP). Int J Dev Biol 53:1069–1074CrossRefPubMedGoogle Scholar
  8. Gürsoy S, Erçal D (2016) Diagnostic approach to genetic causes of early-onset epileptic encephalopathy. J Child Neurol 31:523–532CrossRefPubMedGoogle Scholar
  9. Husedzinovic A, Neumann B, Reymann J et al (2015) The catalytically inactive tyrosine phosphatase HD-PTP/PTPN23 is a novel regulator of SMN complex localization. Mol Biol Cell 26:161–171CrossRefPubMedPubMedCentralGoogle Scholar
  10. Kim J, Lee JE, Heynen-Genel S et al (2010) Functional genomic screen for modulators of ciliogenesis and cilium length. Nature 464:1048–1051CrossRefPubMedPubMedCentralGoogle Scholar
  11. Manteghi S, Gingras M-C, Kharitidi D et al (2016) Haploinsufficiency of the ESCRT component HD-PTP predisposes to cancer. Cell Rep 15:1893–1900CrossRefPubMedGoogle Scholar
  12. McTague A, Howell KB, Cross JH, Kurian MA, Scheffer IE (2016) The genetic landscape of the epileptic encephalopathies of infancy and childhood. Lancet Neurol 15:304–316CrossRefPubMedGoogle Scholar
  13. Miura GI, Roignant J-Y, Wassef M, Treisman JE (2008) Myopic acts in the endocytic pathway to enhance signaling by the Drosophila EGF receptor. Dev Camb Engl 135:1913–1922Google Scholar
  14. Scheffer IE, Berkovic S, Capovilla G et al (2017) ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology. Epilepsia 58:512–521CrossRefPubMedGoogle Scholar
  15. Spielmann M, Kakar N, Tayebi N et al (2016) Exome sequencing and CRISPR/Cas genome editing identify mutations of ZAK as a cause of limb defects in humans and mice. Genome Res 26:183–191CrossRefPubMedPubMedCentralGoogle Scholar
  16. Stefani F, Zhang L, Taylor S et al (2011) UBAP1 is a component of an endosome-specific ESCRT-I complex that is essential for MVB sorting. Curr Biol 21:1245–1250CrossRefPubMedGoogle Scholar
  17. Tavyev Asher YJ, Scaglia F (2012) Molecular bases and clinical spectrum of early infantile epileptic encephalopathies. Eur J Med Genet 55:299–306CrossRefPubMedGoogle Scholar
  18. The UniProt Consortium (2017) UniProt: the universal protein knowledgebase. Nucleic Acids Res 45:D158–D169CrossRefGoogle Scholar
  19. Trujillano D, Bertoli-Avella AM, Kumar Kandaswamy K et al (2017) Clinical exome sequencing: results from 2819 samples reflecting 1000 families. Eur J Hum Genet 25:176–182CrossRefPubMedGoogle Scholar
  20. Vogt J, Kohlhase J, Morlot S et al (2011) Monozygotic twins discordant for neurofibromatosis type 1 due to a postzygotic NF1 gene mutation. Hum Mutat 32:E2134–E2147CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Nadine Sowada
    • 1
  • Mais Omar Hashem
    • 2
  • Rüstem Yilmaz
    • 1
  • Muddathir Hamad
    • 3
  • Naseebullah Kakar
    • 1
    • 4
  • Holger Thiele
    • 5
  • Stefan T. Arold
    • 6
  • Harald Bode
    • 7
  • Fowzan S. Alkuraya
    • 2
    • 8
  • Guntram Borck
    • 1
    Email author
  1. 1.Institute of Human GeneticsUniversity of UlmUlmGermany
  2. 2.Department of GeneticsKing Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
  3. 3.Department of PediatricsKing Khalid University HospitalRiyadhSaudi Arabia
  4. 4.Department of BiotechnologyBUITEMSQuettaPakistan
  5. 5.Cologne Center for GenomicsUniversity of CologneCologneGermany
  6. 6.Division of Biological and Environmental Sciences and Engineering (BESE), Computational Bioscience Research Center (CBRC)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
  7. 7.Division of Pediatric Neurology, Children’s HospitalUniversity of UlmUlmGermany
  8. 8.Saudi Human Genome ProgramKing Abdulaziz City for Science and TechnologyRiyadhSaudi Arabia

Personalised recommendations