Human Genetics

, Volume 136, Issue 7, pp 875–883 | Cite as

CRISPR/Cas9-mediated somatic and germline gene correction to restore hemostasis in hemophilia B mice

  • Cong Huai
  • Chenqiang Jia
  • Ruilin Sun
  • Peipei Xu
  • Taishan Min
  • Qihan Wang
  • Chengde Zheng
  • Hongyan ChenEmail author
  • Daru LuEmail author
Original Investigation


Hemophilia B (HB) is an X-linked disorder caused by defects of F9 encoded coagulation factor IX, which is an ideal model for gene therapy. Most existing HB gene therapies are based on viral mediated gene supplementation, which could increase immunoreaction. In this study, CRISPR/Cas9 system was used for gene correction in an F9 mutant HB mouse model in both adult mice (in vivo) and in germline cells (ex vivo). In vivo, naked Cas9-sgRNA plasmid and donor DNA were delivered to HB mice livers to recover the mutation via hydrodynamic tail vein (HTV) injection. 62.5% of the HTV-treated mice showed a detectable gene correction (>1%) in the F9 alleles of hepatocytes, which was sufficient to remit the coagulation deficiency. Ex vivo, three different forms of Cas9 were microinjected into germline cells of HB mice to investigate their efficiency and safety in gene correction. Cas9 protein showed higher gene recovery rates, less embryo toxicity, and lower mosaic repair percentage, making it more suitable for germline gene therapy. Our study strongly supports that CRISPR/Cas9-mediated genome editing is feasible in gene therapy of genetic disorders.


Gene Correction Cas9 Protein Donor Plasmid Mouse Liver Tissue Cas9 mRNA 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful to Prof. Jihua Yao for her kindness gift of Cas9 expressing plasmid, to Dr. Huaxing Zhu and Mr. Yuanping Liao (Novoprotein Co., Ltd.) for their assistance in Cas9 protein expression and purification, to Dr. Xiao Song and Dr. Shingming Wang for their help in language polishing, to Dr. Kun Chen for providing technical assistance. This work was supported by the grants from the Natural Science Foundation of China (31571371).

Compliance with ethical standards

Conflict of interest

We declare that no competing interests exist.

Supplementary material

439_2017_1801_MOESM1_ESM.docx (1.7 mb)
Supplementary material 1 (DOCX 1692 kb)


  1. Anderson WF (1985) Human gene therapy: scientific and ethical considerations. Recomb DNA Tech Bull 8:55–63PubMedGoogle Scholar
  2. Andrianaivo F, Lecocq M, Wattiaux-De Coninck S, Wattiaux R, Jadot M (2004) Hydrodynamics-based transfection of the liver: entrance into hepatocytes of DNA that causes expression takes place very early after injection. J Gene Med 6:877–883. doi: 10.1002/jgm.574 CrossRefPubMedGoogle Scholar
  3. Anguela XM, Sharma R, Doyon Y, Miller JC, Li H, Haurigot V et al (2013) Robust ZFN-mediated genome editing in adult hemophilic mice. Blood 122:3283–3287. doi: 10.1182/blood-2013-04-497354 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Chen L, Chen H, Lu H, Wu X, Lu D, Qiu X, Xue J (2003) Muscle injection of rAAV/mFIX to secrete clotting factor IX corrects the hemorrhagic tendencies in hemophilia B mice. Sci China C Life Sci 46:422–430. doi: 10.1007/BF03192585 CrossRefPubMedGoogle Scholar
  5. Cho SW, Kim S, Kim Y, Kweon J, Kim HS, Bae S, Kim JS (2014) Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res 24:132–141. doi: 10.1101/gr.162339.113 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cong L, Ran FA, Cox D, Lin SL, Barretto R, Habib N et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823. doi: 10.1126/science.1231143 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Dever DP, Bak RO, Reinisch A, Camarena J, Washington G, Nicolas CE et al (2016) CRISPR/Cas9 beta-globin gene targeting in human haematopoietic stem cells. Nature 539:384–389. doi: 10.1038/nature20134 CrossRefPubMedGoogle Scholar
  8. Guan Y, Ma Y, Li Q, Sun Z, Ma L, Wu L et al (2016) CRISPR/Cas9-mediated somatic correction of a novel coagulator factor IX gene mutation ameliorates hemophilia in mouse. EMBO Mol Med 8:477–488. doi: 10.15252/emmm.201506039 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Iiizumi S, Kurosawa A, So S, Ishii Y, Chikaraishi Y, Ishii A et al (2008) Impact of non-homologous end-joining deficiency on random and targeted DNA integration: implications for gene targeting. Nucleic Acids Res 36:6333–6342. doi: 10.1093/Nar/Gkn649 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Jiang H, Pierce GF, Ozelo MC, de Paula EV, Vargas JA, Smith P et al (2006) Evidence of multiyear factor IX expression by AAV-mediated gene transfer to skeletal muscle in an individual with severe hemophilia B. Mol Ther 14:452–455. doi: 10.1016/j.ymthe.2006.05.004 CrossRefPubMedGoogle Scholar
  11. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821. doi: 10.1126/science.1225829 CrossRefPubMedGoogle Scholar
  12. Jinek M, East A, Cheng A, Lin S, Ma EB, Doudna J (2013) RNA-programmed genome editing in human cells. Elife. doi: 10.7554/eLife.00471 PubMedPubMedCentralGoogle Scholar
  13. Kay MA, Rothenberg S, Landen CN, Bellinger DA, Leland F, Toman C et al (1993) In vivo gene therapy of hemophilia B: sustained partial correction in factor IX-deficient dogs. Science 262:117–119CrossRefPubMedGoogle Scholar
  14. Khorsandi SE, Bachellier P, Weber JC, Greget M, Jaeck D, Zacharoulis D et al (2008) Minimally invasive and selective hydrodynamic gene therapy of liver segments in the pig and human. Cancer Gene Ther 15:225–230. doi: 10.1038/sj.cgt.7701119 CrossRefPubMedGoogle Scholar
  15. Kim JM, Kim D, Kim S, Kim JS (2014a) Genotyping with CRISPR-Cas-derived RNA-guided endonucleases. Nat Commun 5:3157. doi: 10.1038/ncomms4157 PubMedGoogle Scholar
  16. Kim S, Kim D, Cho SW, Kim J, Kim JS (2014b) Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 24:1012–1019. doi: 10.1101/gr.171322.113 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, Joung JK (2016) High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529:490–495. doi: 10.1038/nature16526 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Lebo RV, Golbus MS (1991) Scientific and ethical considerations in human gene therapy. Bailliere’s Clin Obstet Gynaecol 5:697–713CrossRefGoogle Scholar
  19. Li H, Haurigot V, Doyon Y, Li T, Wong SY, Bhagwat AS et al (2011) In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature 475:217–221. doi: 10.1038/nature10177 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Lin S, Staahl B, Alla RK, Doudna JA (2014) Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Elife. doi: 10.7554/Elife.04766 Google Scholar
  21. Liu F, Song Y, Liu D (1999) Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther 6:1258–1266. doi: 10.1038/ CrossRefPubMedGoogle Scholar
  22. Lu DR, Zhou JM, Zheng B, Qiu XF, Xue JL, Wang JM et al (1993) Stage I clinical trial of gene therapy for hemophilia B. Sci China B 36:1342–1351PubMedGoogle Scholar
  23. Manno CS, Chew AJ, Hutchison S, Larson PJ, Herzog RW, Arruda VR et al (2003) AAV-mediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B. Blood 101:2963–2972. doi: 10.1182/blood-2002-10-3296 CrossRefPubMedGoogle Scholar
  24. Manno CS, Pierce GF, Arruda VR, Glader B, Ragni M, Rasko JJ et al (2006) Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med 12:342–347. doi: 10.1038/nm1358 CrossRefPubMedGoogle Scholar
  25. Nathwani AC, Reiss UM, Tuddenham EG, Rosales C, Chowdary P, McIntosh J et al (2014) Long-term safety and efficacy of factor IX gene therapy in hemophilia B. N Engl J Med 371:1994–2004. doi: 10.1056/NEJMoa1407309 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Qihan W, Cong H, Ruilin S, Huaxing Z, Hongyan C, Jian F, Daru L (2015) A quick and efficient method to generate hemophilia B mouse models by the CRISPR/Cas system. Yi chuan 37:1143–1148. doi: 10.16288/j.yczz.15-117 PubMedGoogle Scholar
  27. Rallapalli PM, Kemball-Cook G, Tuddenham EG, Gomez K, Perkins SJ (2013) An interactive mutation database for human coagulation factor IX provides novel insights into the phenotypes and genetics of hemophilia B. J Thromb Haemost 11:1329–1340. doi: 10.1111/jth.12276 CrossRefPubMedGoogle Scholar
  28. Schwank G, Koo BK, Sasselli V, Dekkers JF, Heo I, Demircan T et al (2013) Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13:653–658. doi: 10.1016/j.stem.2013.11.002 CrossRefPubMedGoogle Scholar
  29. Sharma R, Anguela XM, Doyon Y, Wechsler T, DeKelver RC, Sproul S et al (2015) In vivo genome editing of the albumin locus as a platform for protein replacement therapy. Blood 126:1777–1784. doi: 10.1182/blood-2014-12-615492 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Sung YH, Kim JM, Kim HT, Lee J, Jeon J, Jin Y et al (2014) Highly efficient gene knockout in mice and zebrafish with RNA-guided endonucleases. Genome Res 24:125–131. doi: 10.1101/gr.163394.113 CrossRefPubMedPubMedCentralGoogle Scholar
  31. van der Stoep N, van Paridon CD, Janssens T, Krenkova P, Stambergova A, Macek M et al (2009) Diagnostic guidelines for high-resolution melting curve (HRM) analysis: an interlaboratory validation of BRCA1 mutation scanning using the 96-well LightScanner. Hum Mutat 30:899–909. doi: 10.1002/humu.21004 CrossRefPubMedGoogle Scholar
  32. Wang L, Takabe K, Bidlingmaier SM, Ill CR, Verma IM (1999) Sustained correction of bleeding disorder in hemophilia B mice by gene therapy. Proc Natl Acad Sci USA 96:3906–3910CrossRefPubMedPubMedCentralGoogle Scholar
  33. Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910–918. doi: 10.1016/j.cell.2013.04.025 CrossRefPubMedPubMedCentralGoogle Scholar
  34. White GC 2nd, Rosendaal F, Aledort LM, Lusher JM, Rothschild C, Ingerslev J et al (2001) Definitions in hemophilia. Recommendation of the scientific subcommittee on factor VIII and factor IX of the scientific and standardization committee of the International Society on Thrombosis and Haemostasis. Thromb Haemost 85:560PubMedGoogle Scholar
  35. Wu YX, Liang D, Wang YH, Bai MZ, Tang W, Bao SM et al (2013) Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell 13:659–662. doi: 10.1016/j.stem.2013.10.016 CrossRefPubMedGoogle Scholar
  36. Xu P, Tong Y, Liu XZ, Wang TT, Cheng L, Wang BY et al (2015) Both TALENs and CRISPR/Cas9 directly target the HBB IVS2-654 (C>T) mutation in beta-thalassemia-derived iPSCs. Sci Rep 5:12065. doi: 10.1038/srep12065 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Yant SR, Meuse L, Chiu W, Ivics Z, Izsvak Z, Kay MA (2000) Somatic integration and long-term transgene expression in normal and haemophilic mice using a DNA transposon system. Nat Genet 25:35–41. doi: 10.1038/75568 CrossRefPubMedGoogle Scholar
  38. Yang J, Chen S, Huang L, Michalopoulos GK, Liu Y (2001) Sustained expression of naked plasmid DNA encoding hepatocyte growth factor in mice promotes liver and overall body growth. Hepatology 33:848–859. doi: 10.1053/jhep.2001.23438 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Yin H, Xue W, Chen S, Bogorad RL, Benedetti E, Grompe M et al (2014) Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol 32:551–553. doi: 10.1038/Nbt.2884 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Zhou J, Shen B, Zhang W, Wang J, Yang J, Chen L et al (2014) One-step generation of different immunodeficient mice with multiple gene modifications by CRISPR/Cas9 mediated genome engineering. Int J Biochem Cell Biol 46:49–55. doi: 10.1016/j.biocel.2013.10.010 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Key Laboratory of Genetic Engineering, MOE Key Laboratory of Contemporary AnthropologyRoom C613, Building for School of Life Sciences, Fudan UniversityShanghaiChina
  2. 2.Shanghai Model Organisms CenterShanghaiChina

Personalised recommendations