Human Genetics

, Volume 135, Issue 11, pp 1279–1286 | Cite as

Genome-wide scans reveal variants at EDAR predominantly affecting hair straightness in Han Chinese and Uyghur populations

  • Sijie Wu
  • Jingze Tan
  • Yajun Yang
  • Qianqian Peng
  • Manfei Zhang
  • Jinxi Li
  • Dongsheng Lu
  • Yu Liu
  • Haiyi Lou
  • Qidi Feng
  • Yan Lu
  • Yaqun Guan
  • Zhaoxia Zhang
  • Yi Jiao
  • Pardis Sabeti
  • Jean Krutmann
  • Kun Tang
  • Li Jin
  • Shuhua Xu
  • Sijia Wang
Original Investigation

Abstract

Hair straightness/curliness is one of the most conspicuous features of human variation and is particularly diverse among populations. A recent genome-wide scan found common variants in the Trichohyalin (TCHH) gene that are associated with hair straightness in Europeans, but different genes might affect this phenotype in other populations. By sampling 2899 Han Chinese, we performed the first genome-wide scan of hair straightness in East Asians, and found EDAR (rs3827760) as the predominant gene (P = 4.67 × 10−16), accounting for 3.66 % of the total variance. The candidate gene approach did not find further significant associations, suggesting that hair straightness may be affected by a large number of genes with subtle effects. Notably, genetic variants associated with hair straightness in Europeans are generally low in frequency in Han Chinese, and vice versa. To evaluate the relative contribution of these variants, we performed a second genome-wide scan in 709 samples from the Uyghur, an admixed population with both eastern and western Eurasian ancestries. In Uyghurs, both EDAR (rs3827760: P = 1.92 × 10−12) and TCHH (rs11803731: P = 1.46 × 10−3) are associated with hair straightness, but EDAR (OR 0.415) has a greater effect than TCHH (OR 0.575). We found no significant interaction between EDAR and TCHH (P = 0.645), suggesting that these two genes affect hair straightness through different mechanisms. Furthermore, haplotype analysis indicates that TCHH is not subject to selection. While EDAR is under strong selection in East Asia, it does not appear to be subject to selection after the admixture in Uyghurs. These suggest that hair straightness is unlikely a trait under selection.

Supplementary material

439_2016_1718_MOESM1_ESM.pdf (1.8 mb)
The Supplementary material 1 (PDF 1822 kb)

References

  1. Adhikari K, Fontanil T, Cal S, Mendoza-Revilla J, Fuentes-Guajardo M, Chacon-Duque JC, Al-Saadi F, Johansson JA, Quinto-Sanchez M, Acuna-Alonzo V, Jaramillo C, Arias W, Barquera Lozano R, Macin Perez G, Gomez-Valdes J, Villamil-Ramirez H, Hunemeier T, Ramallo V, Silva de Cerqueira CC, Hurtado M, Villegas V, Granja V, Gallo C, Poletti G, Schuler-Faccini L, Salzano FM, Bortolini MC, Canizales-Quinteros S, Rothhammer F, Bedoya G, Gonzalez-Jose R, Headon D, Lopez-Otin C, Tobin DJ, Balding D, Ruiz-Linares A (2016) A genome-wide association scan in admixed Latin Americans identifies loci influencing facial and scalp hair features. Nat Commun 7:10815. doi:10.1038/ncomms10815 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bhatia G, Tandon A, Patterson N, Aldrich MC, Ambrosone CB, Amos C, Bandera EV, Berndt SI, Bernstein L, Blot WJ, Bock CH, Caporaso N, Casey G, Deming SL, Diver WR, Gapstur SM, Gillanders EM, Harris CC, Henderson BE, Ingles SA, Isaacs W, De Jager PL, John EM, Kittles RA, Larkin E, McNeill LH, Millikan RC, Murphy A, Neslund-Dudas C, Nyante S, Press MF, Rodriguez-Gil JL, Rybicki BA, Schwartz AG, Signorello LB, Spitz M, Strom SS, Tucker MA, Wiencke JK, Witte JS, Wu X, Yamamura Y, Zanetti KA, Zheng W, Ziegler RG, Chanock SJ, Haiman CA, Reich D, Price AL (2014) Genome-wide scan of 29,141 African Americans finds no evidence of directional selection since admixture. Am J Hum Genet 95:437–444. doi:10.1016/j.ajhg.2014.08.011 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Eriksson N, Macpherson JM, Tung JY, Hon LS, Naughton B, Saxonov S, Avey L, Wojcicki A, Pe’er I, Mountain J (2010) Web-based, participant-driven studies yield novel genetic associations for common traits. PLoS Genet 6:e1000993. doi:10.1371/journal.pgen.1000993 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Frost P (2006) European hair and eye color—a case of frequency-dependent sexual selection? Evol Hum Behav 27:85–103. doi:10.1016/j.evolhumbehav.2005.07.002 CrossRefGoogle Scholar
  5. Fujimoto A, Kimura R, Ohashi J, Omi K, Yuliwulandari R, Batubara L, Mustofa MS, Samakkarn U, Settheetham-Ishida W, Ishida T, Morishita Y, Furusawa T, Nakazawa M, Ohtsuka R, Tokunaga K (2008) A scan for genetic determinants of human hair morphology: EDAR is associated with Asian hair thickness. Hum Mol Genet 17:835–843. doi:10.1093/Hmg/Ddm355 CrossRefPubMedGoogle Scholar
  6. Gautier M, Vitalis R (2012) rehh: an R package to detect footprints of selection in genome-wide SNP data from haplotype structure. Bioinformatics 28:1176–1177. doi:10.1093/bioinformatics/bts115 CrossRefPubMedGoogle Scholar
  7. Grossman SR, Shylakhter I, Karlsson EK, Byrne EH, Morales S, Frieden G, Hostetter E, Angelino E, Garber M, Zuk O, Lander ES, Schaffner SF, Sabeti PC (2010) A composite of multiple signals distinguishes causal variants in regions of positive selection. Science 327:883–886. doi:10.1126/science.1183863 CrossRefPubMedGoogle Scholar
  8. Han B, Eskin E (2011) Random-effects model aimed at discovering associations in meta-analysis of genome-wide association studies. Am J Hum Genet 88:586–598. doi:10.1016/j.ajhg.2011.04.014 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Higgins JPT, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21:1539–1558. doi:10.1002/sim.1186 CrossRefPubMedGoogle Scholar
  10. Howie BN, Donnelly P, Marchini J (2009) A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. doi:10.1371/journal.pgen.1000529 PubMedPubMedCentralGoogle Scholar
  11. Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332. doi:10.1111/j.1755-0998.2009.02591.x CrossRefPubMedPubMedCentralGoogle Scholar
  12. Kamberov YG, Wang SJ, Tan JZ, Gerbault P, Wark A, Tan LZ, Yang YJ, Li SL, Tang K, Chen H, Powell A, Itan Y, Fuller D, Lohmueller J, Mao JH, Schachar A, Paymer M, Hostetter E, Byrne E, Burnett M, McMahon AP, Thomas MG, Lieberman DE, Jin L, Tabin CJ, Morgan BA, Sabeti PC (2013) Modeling recent human evolution in mice by expression of a selected EDAR variant. Cell 152:691–702. doi:10.1016/j.cell.2013.01.016 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Liu X, Ong RT, Pillai EN, Elzein AM, Small KS, Clark TG, Kwiatkowski DP, Teo YY (2013) Detecting and characterizing genomic signatures of positive selection in global populations. Am J Hum Genet 92:866–881. doi:10.1016/j.ajhg.2013.04.021 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Loussouarn G, Garcel AL, Lozano I, Collaudin C, Porter C, Panhard S, Saint-Leger D, de La Mettrie R (2007) Worldwide diversity of hair curliness: a new method of assessment. Int J Dermatol 46(Suppl 1):2–6. doi:10.1111/j.1365-4632.2007.03453.x CrossRefPubMedGoogle Scholar
  15. Marchini J, Howie B (2010) Genotype imputation for genome-wide association studies. Nat Rev Genet 11:499–511. doi:10.1038/nrg2796 CrossRefPubMedGoogle Scholar
  16. Medland SE, Nyholt DR, Painter JN, McEvoy BP, Mcrae AF, Zhu G, Gordon SD, Ferreira MAR, Wright MJ, Henders AK, Campbell MJ, Duffy DL, Hansell NK, Macgregor S, Slutske WS, Heath AC, Montgomery GW, Martin NG (2009a) Common variants in the trichohyalin gene are associated with straight hair in Europeans. Am J Hum Genet 85:750–755. doi:10.1016/j.ajhg.2009.10.009 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Medland SE, Zhu G, Martin NG (2009b) Estimating the heritability of hair curliness in twins of European Ancestry. Twin Res Hum Genet 12:514–518CrossRefPubMedGoogle Scholar
  18. Mou C, Thomason HA, Willan PM, Clowes C, Harris WE, Drew CF, Dixon J, Dixon MJ, Headon DJ (2008) Enhanced ectodysplasin-A receptor (EDAR) signaling alters multiple fiber characteristics to produce the east asian hair form. Hum Mutat 29:1405–1411. doi:10.1002/humu.20795 CrossRefPubMedGoogle Scholar
  19. O’Connell J, Gurdasani D, Delaneau O, Pirastu N, Ulivi S, Cocca M, Traglia M, Huang J, Huffman JE, Rudan I, McQuillan R, Fraser RM, Campbell H, Polasek O, Asiki G, Ekoru K, Hayward C, Wright AF, Vitart V, Navarro P, Zagury JF, Wilson JF, Toniolo D, Gasparini P, Soranzo N, Sandhu MS, Marchini J (2014) A general approach for haplotype phasing across the full spectrum of relatedness. PLoS Genet 10:e1004234. doi:10.1371/journal.pgen.1004234 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Pasaniuc B, Zaitlen N, Lettre G, Chen GK, Tandon A, Kao WH, Ruczinski I, Fornage M, Siscovick DS, Zhu X, Larkin E, Lange LA, Cupples LA, Yang Q, Akylbekova EL, Musani SK, Divers J, Mychaleckyj J, Li M, Papanicolaou GJ, Millikan RC, Ambrosone CB, John EM, Bernstein L, Zheng W, Hu JJ, Ziegler RG, Nyante SJ, Bandera EV, Ingles SA, Press MF, Chanock SJ, Deming SL, Rodriguez-Gil JL, Palmer CD, Buxbaum S, Ekunwe L, Hirschhorn JN, Henderson BE, Myers S, Haiman CA, Reich D, Patterson N, Wilson JG, Price AL (2011) Enhanced statistical tests for GWAS in admixed populations: assessment using African Americans from CARe and a Breast Cancer Consortium. PLoS Genet 7:e1001371. doi:10.1371/journal.pgen.1001371 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Pereira TV, Patsopoulos NA, Salanti G, Ioannidis JPA (2010) Critical interpretation of Cochran’s Q test depends on power and prior assumptions about heterogeneity. Res Synth Methods 1:149–161. doi:10.1002/jrsm.13 CrossRefPubMedGoogle Scholar
  22. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909. doi:10.1038/ng1847 CrossRefPubMedGoogle Scholar
  23. Pritchard JK, Price AL, Tandon A, Patterson N, Barnes KC, Rafaels N, Ruczinski I, Beaty TH, Mathias R, Reich D, Myers S (2009) Sensitive detection of chromosomal segments of distinct ancestry in admixed populations. PLoS Genet 5:e1000519. doi:10.1371/journal.pgen.1000519 CrossRefGoogle Scholar
  24. Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, Boehnke M, Abecasis GR, Willer CJ (2010) LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 26:2336–2337. doi:10.1093/bioinformatics/btq419 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575. doi:10.1086/519795 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Sabeti PC, Reich DE, Higgins JM, Levine HZP, Richter DJ, Schaffner SF, Gabriel SB, Platko JV, Patterson NJ, McDonald GJ, Ackerman HC, Campbell SJ, Altshuler D, Cooper R, Kwiatkowski D, Ward R, Lander ES (2002) Detecting recent positive selection in the human genome from haplotype structure. Nature 419:832–837. doi:10.1038/Nature01140 CrossRefPubMedGoogle Scholar
  27. Tan JZ, Yang YJ, Tang K, Sabeti PC, Jin L, Wang SJ (2013) The adaptive variant EDARV370A is associated with straight hair in East Asians. Hum Genet 132:1187–1191. doi:10.1007/s00439-013-1324-1 CrossRefPubMedGoogle Scholar
  28. Thibaut S, Barbarat P, Leroy F, Bernard BA (2007) Human hair keratin network and curvature. Int J Dermatol 46(Suppl 1):7–10. doi:10.1111/j.1365-4632.2007.03454.x CrossRefPubMedGoogle Scholar
  29. Voight BF, Kudaravalli S, Wen XQ, Pritchard JK (2006) A map of recent positive selection in the human genome. PLoS Biol 4:446–458. doi:10.1371/journal.pbio.0040072 CrossRefGoogle Scholar
  30. Wang XF, Lu M, Qian J, Yang YJ, Li SL, Lu DR, Yu SZ, Meng W, Ye WM, Jin L (2009) Rationales, design and recruitment of the Taizhou Longitudinal Study. BMC Public Health. doi:10.1186/1471-2458-9-223 Google Scholar
  31. Willer CJ, Li Y, Abecasis GR (2010) METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26:2190–2191. doi:10.1093/bioinformatics/btq340 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, Madden PA, Heath AC, Martin NG, Montgomery GW, Goddard ME, Visscher PM (2010) Common SNPs explain a large proportion of the heritability for human height. Nat Genet 42:565–569. doi:10.1038/ng.608 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Yang J, Lee SH, Goddard ME, Visscher PM (2011) GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet 88:76–82. doi:10.1016/j.ajhg.2010.11.011 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
  2. 2.State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life SciencesFudan UniversityShanghaiChina
  3. 3.Fudan-Taizhou Institute of Health SciencesTaizhouChina
  4. 4.Department of Biochemistry, Preclinical Medicine CollegeXinjiang Medical UniversityUrumqiChina
  5. 5.Department of Organismic and Evolutionary Biology, Center for Systems BiologyHarvard UniversityCambridgeUSA
  6. 6.The Broad Institute of MIT and HarvardCambridgeUSA
  7. 7.IUF-Leibniz Research Institute for Environmental MedicineDusseldorfGermany
  8. 8.School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina

Personalised recommendations