Human Genetics

, Volume 135, Issue 9, pp 993–1010 | Cite as

Treating hemoglobinopathies using gene-correction approaches: promises and challenges

  • Renee N. Cottle
  • Ciaran M. Lee
  • Gang Bao
Part of the following topical collections:
  1. Genome Editing


Hemoglobinopathies are genetic disorders caused by aberrant hemoglobin expression or structure changes, resulting in severe mortality and health disparities worldwide. Sickle cell disease (SCD) and β-thalassemia, the most common forms of hemoglobinopathies, are typically treated using transfusions and pharmacological agents. Allogeneic hematopoietic stem cell transplantation is the only curative therapy, but has limited clinical applicability. Although gene therapy approaches have been proposed based on the insertion and forced expression of wild-type or anti-sickling β-globin variants, safety concerns may impede their clinical application. A novel curative approach is nuclease-based gene correction, which involves the application of precision genome-editing tools to correct the disease-causing mutation. This review describes the development and potential application of gene therapy and precision genome-editing approaches for treating SCD and β-thalassemia. The opportunities and challenges in advancing a curative therapy for hemoglobinopathies are also discussed.


Hematopoietic Stem Cell Transplantation Sickle Cell Disease Long Terminal Repeat Cluster Regularly Interspaced Short Palindromic Repeat Sickle Cell Disease Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Institutes of Health as an NIH Nanomedicine Development Center Award (PN2EY018244 to GB) and by the Cancer Prevention and Research Institute of Texas (RR140081 to GB).

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interests.


  1. Ando D, Walters MC, Chang K-H, Reik A, Urnov FD, Lee G, Spratt KS, Rebar EJ, Gregory PD, Tang W, Papayannopoulou T, Stamatoyannopoulos G, Nichol G (2015) Preclinical studies for the first hematopoietic stem cell (HSC) gene editing trial: phase 1 study of beta-thalassemia with autologous transplantation of zinc finger nuclease-treated hsc to upregulate fetal hemoglobin. American Society of Gene and Cell Therapy (Conference Proceeding, New Orleans)Google Scholar
  2. Angelucci E, Matthes-Martin S, Baronciani D, Bernaudin F, Bonanomi S, Cappellini MD, Dalle JH, Di Bartolomeo P, de Heredia CD, Dickerhoff R, Giardini C, Gluckman E, Hussein AA, Kamani N, Minkov M, Locatelli F, Rocha V, Sedlacek P, Smiers F, Thuret I, Yaniv I, Cavazzana M, Peters C, Error EI, Parties EPW (2014) Hematopoietic stem cell transplantation in thalassemia major and sickle cell disease: indications and management recommendations from an international expert panel. Haematologica 99:811–820PubMedPubMedCentralCrossRefGoogle Scholar
  3. Arruda VR, Lima CS, Saad ST, Costa FF (1997) Successful use of hydroxyurea in beta-thalassemia major. N Engl J Med 336:964PubMedCrossRefGoogle Scholar
  4. Ashley-Koch A, Yang Q, Olney RS (2000) Sickle hemoglobin (Hb S) allele and sickle cell disease: a HuGE review. Am J Epidemiol 151:839–845PubMedCrossRefGoogle Scholar
  5. Bank A, Dorazio R, Leboulch P (2005) A phase I/II clinical trial of beta-globin gene therapy for beta-thalassemia. Ann N Y Acad Sci 1054:308–316PubMedCrossRefGoogle Scholar
  6. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712. doi: 10.1126/science.1138140 PubMedCrossRefGoogle Scholar
  7. Bauer DE, Kamran SC, Lessard S, Xu J, Fujiwara Y, Lin C, Shao Z, Canver MC, Smith EC, Pinello L, Sabo PJ, Vierstra J, Voit RA, Yuan GC, Porteus MH, Stamatoyannopoulos JA, Lettre G, Orkin SH (2013) An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level. Science 342:253–257PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bernaudin F, Socie G, Kuentz M, Chevret S, Duval M, Bertrand Y, Vannier JP, Yakouben K, Thuret I, Bordigoni P, Fischer A, Lutz P, Stephan JL, Dhedin N, Plouvier E, Margueritte G, Bories D, Verlhac S, Esperou H, Coic L, Vernant JP, Gluckman E, Sfgm TC (2007) Long-term results of related myeloablative stem-cell transplantation to cure sickle cell disease. Blood 110:2749–2756. doi: 10.1182/blood-2007-03-079665 PubMedCrossRefGoogle Scholar
  9. Bibikova M, Golic M, Golic KG, Carroll D (2002) Targeted chromosomal cleavage and mutagenesis in drosophila using zinc-finger nucleases. Genetics 161:1169–1175PubMedPubMedCentralGoogle Scholar
  10. Bibikova M, Beumer K, Trautman JK, Carroll D (2003) Enhancing gene targeting with designed zinc finger nucleases. Science 300:764PubMedCrossRefGoogle Scholar
  11. Boch J, Bonas U (2010) Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol 48:419–436PubMedCrossRefGoogle Scholar
  12. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512PubMedCrossRefGoogle Scholar
  13. Bogdanove AJ, Schornack S, Lahaye T (2010) TAL effectors: finding plant genes for disease and defense. Curr Opin Plant Biol 13:394–401PubMedCrossRefGoogle Scholar
  14. Boztug K, Schmidt M, Schwarzer A, Banerjee PP, Diez IA, Dewey RA, Bohm M, Nowrouzi A, Ball CR, Glimm H, Naundorf S, Kuhlcke K, Blasczyk R, Kondratenko I, Marodi L, Orange JS, von Kalle C, Klein C (2010) Stem-cell gene therapy for the Wiskott–Aldrich syndrome. N Engl J Med 363:1918–1927PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bradai M, Abad MT, Pissard S, Lamraoui F, Skopinski L, de Montalembert M (2003) Hydroxyurea can eliminate transfusion requirements in children with severe beta-thalassemia. Blood 102:1529–1530PubMedCrossRefGoogle Scholar
  16. Bridges KR, Pearson HA (2008) Anemias and other red cell disorders, 1st edn. McGraw-Hill Companies, New YorkGoogle Scholar
  17. Brinkman EK, Chen T, Amendola M, van Steensel B (2014) Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res 42:e168PubMedPubMedCentralCrossRefGoogle Scholar
  18. BusinessWire (2015a) Bluebird Bio Announces Presentation at Cooley’s Anemia Foundation Symposium. Professor Marina Cavazzana presents overview on experience with investigational gene therapy in beta-thalassemia. Business Wire.
  19. BusinessWire (2015b) Bluebird bio Reports New Beta-thalassemia Major Data from Northstar Study of LentiGlobin® at ASH Annual Meeting. Transfusion independence observed in patients with non-β0/β0 genotypes. Transfusion reduction between 33 percent and 100 percent observed in patients with β0/β0 genotype.
  20. Canver MC, Smith EC, Sher F, Pinello L, Sanjana NE, Shalem O, Chen DD, Schupp PG, Vinjamur DS, Garcia SP, Luc S, Kurita R, Nakamura Y, Fujiwara Y, Maeda T, Yuan G-C, Zhang F, Orkin SH, Bauer DE (2015) BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature 527:192–197PubMedPubMedCentralCrossRefGoogle Scholar
  21. Cao A, Galanello R (2010) Beta-thalassemia. Genet Med 12:61–76PubMedCrossRefGoogle Scholar
  22. Carroll D (2011) Genome engineering with zinc-finger nucleases. Genetics 188:773–782PubMedPubMedCentralCrossRefGoogle Scholar
  23. Castro O, Brambilla DJ, Thorington B, Reindorf CA, Scott RB, Gillette P, Vera JC, Levy PS (1994) The acute chest syndrome in sickle cell disease: incidence and risk factors. The Cooperative Study of Sickle Cell Disease. Blood 84:643–649PubMedGoogle Scholar
  24. Cavazzana M, Ribeil J-A, Payen E, Suarez F, Beuzard Y, Touzot F, Cavallesco R, Lefrère F, Chretien S, Bourget P, Monpoux F, Pondarre C, Neven B, Schmidt M, von Kalle C, Sandler L, Soni S, Hermine O, Blanche S, De Montalembert M, Hacein-Bey-Abina S, Leboulch P (2014) Study Hgb-205: outcomes of gene therapy for hemoglobinopathies via transplantation of autologous hematopoietic stem cells transduced ex vivo with a lentiviral βΑ-T87Q-globin vector (LentiGlobin® BB305 Drug Product). Blood 124:4797Google Scholar
  25. Cavazzana M, Ribeil J-A, Payen E, Suarez F, Beuzard Y, Touzot F, Cavallesco R, Lefrere F, Chretien S, Bourget P, Monpoux F, Pondarre C, Neven B, Schmidt M, von Kalle C, Kuypers FA, Sandler L, Soni S, Hermine O, Blanche S, De Montalembert M, Hacien-Bey-Abina S, Leboulch P (2015a) Outcomes of gene therapy for severe sickle disease and beta-thalassemia major via transplantation of autologous hematopoietic stem cells transduced ex vivo with a lentiviral beta AT87Q-globin vector. Blood 126:202Google Scholar
  26. Cavazzana M, Ribeil JA, Payen E, Suarez F, Beuzard Y, Touzot F, Cavallesco R, Lefrere F, Chretien S, Bourget P, Monopoux F, Pondarre C, Neven B, Schmidt M, Von Kalle C, Kuypers FA, Sandler L, Soni S, Hermine O, Blanche S, de Montalembert M, Hacein-Bay-Abina S, Leboulch P (2015) Outcomes of gene therapy for β-thalassemia major and severe sickle disease via transplantation of autologous hematopoietic stem cells transduced ex vivo with a lentiviral beta globin vector. In: 20th congress of the Eurpean Hematology Association, Vienna, Austria 2015Google Scholar
  27. Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, Gross F, Yvon E, Nusbaum P, Selz F, Hue C, Certain S, Casanova JL, Bousso P, Deist FL, Fischer A (2000) Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288:669–672PubMedCrossRefGoogle Scholar
  28. Cavazzana-Calvo M, Payen E, Negre O, Wang G, Hehir K, Fusil F, Down J, Denaro M, Brady T, Westerman K, Cavallesco R, Gillet-Legrand B, Caccavelli L, Sgarra R, Maouche-Chretien L, Bernaudin F, Girot R, Dorazio R, Mulder G-J, Polack A, Bank A, Soulier J, Larghero J, Kabbara N, Dalle B, Gourmel B, Socie G, Chretien S, Cartier N, Aubourg P, Fischer A, Cornetta K, Galacteros F, Beuzard Y, Gluckman E, Bushman F, Hacein-Bey-Abina S, Leboulch P (2010) Transfusion independence and HMGA2 activation after gene therapy of human [bgr]-thalassaemia. Nature 467:318–322PubMedPubMedCentralCrossRefGoogle Scholar
  29. Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39:e82PubMedPubMedCentralCrossRefGoogle Scholar
  30. Certo MT, Ryu BY, Annis JE, Garibov M, Jarjour J, Rawlings DJ, Scharenberg AM (2011) Tracking genome engineering outcome at individual DNA breakpoints. Nat Methods 8:671–676PubMedPubMedCentralCrossRefGoogle Scholar
  31. Chang JC, Ye L, Kan YW (2006) Correction of the sickle cell mutation in embryonic stem cells. Proc Natl Acad Sci USA 103:1036–1040PubMedPubMedCentralCrossRefGoogle Scholar
  32. Chang K-H, Sullivan T, Liu M, Yang X, Sun C, Vieira B, Zhang M, Hong VP, Chen K, Smith S, Tan S, Reik A, Urnov FD, Rebar EJ, Danos O, Jiang H (2015) Clonal analysis of human bone marrow CD34+ cells edited by BCL11A-targeting zinc finger nucleases reveals clinically relevant levels of fetal globin expression in edited erythroid progeny. Blood 126:3234Google Scholar
  33. Charache S, Terrin ML, Moore RD, Dover GJ, Barton FB, Eckert SV, McMahon RP, Bonds DR (1995) Effect of hydroxyurea on the frequency of painful crises in sickle cell anemia. Investigators of the Multicenter Study of Hydroxyurea in Sickle Cell Anemia. N Engl J Med 332:1317–1322PubMedCrossRefGoogle Scholar
  34. Cho SW, Lee J, Carroll D, Kim JS, Lee J (2013) Heritable gene knockout in Caenorhabditis elegans by direct injection of Cas9-sgRNA ribonucleoproteins. Genetics 195:1177–1180PubMedPubMedCentralCrossRefGoogle Scholar
  35. Choo Y, Klug A (1994) Toward a code for the interactions of zinc fingers with DNA: selection of randomized fingers displayed on phage. Proc Natl Acad Sci USA 91:11163–11167PubMedPubMedCentralCrossRefGoogle Scholar
  36. Choulika A, Perrin A, Dujon B, Nicolas J-F (1995) Induction of homologous recombination in mammalian chromosomes using the I-SceI system of Saccharomyces cerevisiae. Mol Cell Biol 15:1968–1973PubMedPubMedCentralCrossRefGoogle Scholar
  37. Colleaux L, D’Auriol L, Galibert F, Dujon B (1988) Recognition and cleavage site of the intron-encoded omega transposase. Proc Natl Acad Sci USA 85:6022–6026PubMedPubMedCentralCrossRefGoogle Scholar
  38. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823PubMedPubMedCentralCrossRefGoogle Scholar
  39. Cottle RN, Lee CM, Archer D, Bao G (2015) Controlled delivery of β-globin-targeting TALENs and CRISPR/Cas9 into mammalian cells for genome editing using microinjection. Sci Rep 5:16031PubMedPubMedCentralCrossRefGoogle Scholar
  40. Cradick TJ, Fine EJ, Antico CJ, Bao G (2013) CRISPR/Cas9 systems targeting β-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Res 41:9584–9592PubMedPubMedCentralCrossRefGoogle Scholar
  41. Cradick TJ, Qiu P, Lee CM, Fine EJ, Bao G (2014) COSMID: a web-based tool for identifying and validating CRISPR/Cas off-target sites. Mol Ther Nucleic Acids 3:e214PubMedPubMedCentralCrossRefGoogle Scholar
  42. Dixit A, Chatterjee TC, Mishra P, Choudhry DR, Mahapatra M, Tyagi S, Kabra M, Saxena R, Choudhry VP (2005) Hydroxyurea in thalassemia intermedia—a promising therapy. Ann Hematol 84:441–446PubMedCrossRefGoogle Scholar
  43. Elliot B, Richardson C, Winderbaum J, Nickoloff JA, Jasin M (1998) Gene conversion tracts from double strand break repair in mammalian cells. Mol Cell Biol 18:93–101CrossRefGoogle Scholar
  44. Fine EJ, Cradick TJ, Zhao CL, Lin Y, Bao G (2014) An online bioinformatics tool predicts zinc finger and TALE nuclease off-target cleavage. Nucleic Acids Res 42:e42PubMedCrossRefGoogle Scholar
  45. Forrester WC, Takegawa S, Papayannopoulou T, Stamatoyannopoulos G, Groudine M (1987) Evidence for a locus activation region: the formation of developmentally stable hypersensitive sites in globin-expressing hybrids. Nucleic Acids Res 15:10159–10177PubMedPubMedCentralCrossRefGoogle Scholar
  46. Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31:822–826. doi: 10.1038/nbt.2623 PubMedPubMedCentralCrossRefGoogle Scholar
  47. Fucharoen S, Siritanaratkul N, Winichagoon P, Chowthaworn J, Siriboon W, Muangsup W, Chaicharoen S, Poolsup N, Chindavijak B, Pootrakul P, Piankijagum A, Schechter AN, Rodgers GP (1996) Hydroxyurea increases hemoglobin F levels and improves the effectiveness of erythropoiesis in beta-thalassemia/hemoglobin E disease. Blood 87:887–892PubMedGoogle Scholar
  48. Genovese P, Schiroli G, Escobar G, Di Tomaso T, Firrito C, Calabria A, Moi D, Mazzieri R, Bonini C, Holmes MC, Gregory PD, van der Burg M, Gentner B, Montini E, Lombardo A, Naldini L (2014) Targeted genome editing in human repopulating haematopoietic stem cells. Nature 510:235–240PubMedPubMedCentralCrossRefGoogle Scholar
  49. Goldberg MA, Husson MA, Bunn HF (1977) Participation of hemoglobins A and F in polymerization of sickle hemoglobin. J Biol Chem 252:3414–3421PubMedGoogle Scholar
  50. Grosveld F, van Assendelft GB, Greaves DR, Kollias G (1987) Position-independent, high-level expression of the human beta-globin gene in transgenic mice. Cell 51:975–985PubMedCrossRefGoogle Scholar
  51. Hacein-Bey-Abina S, von Kalle C, Schmidt M, Le Deist F, Wulffraat N, McIntyre E, Radford I, Villeval JL, Fraser CC, Cavazzana-Calvo M, Fischer A (2003a) A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 348:255–256CrossRefPubMedGoogle Scholar
  52. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, Lim A, Osborne CS, Pawliuk R, Morillon E, Sorensen R, Forster A, Fraser P, Cohen JI, de Saint Basile G, Alexander I, Wintergerst U, Frebourg T, Aurias A, Stoppa-Lyonnet D, Romana S, Radford-Weiss I, Gross F, Valensi F, Delabesse E, Macintyre E, Sigaux F, Soulier J, Leiva LE, Wissler M, Prinz C, Rabbitts TH, Le Deist F, Fischer A, Cavazzana-Calvo M (2003b) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302:415–419PubMedCrossRefGoogle Scholar
  53. Hankins JS, Aygun B, Nottage K, Thornburg C, Smeltzer MP, Ware RE, Wang WC (2014) From infancy to adolescence: fifteen years of continuous treatment with hydroxyurea in sickle cell anemia. Medicine (Baltimore) 93:e215CrossRefGoogle Scholar
  54. Hassell KL (2010) Population estimates of sickle cell disease in the U.S. Am J Prev Med 38:S512–S521PubMedCrossRefGoogle Scholar
  55. Hendel A, Kildebeck EJ, Fine EJ, Clark JT, Punjya N, Sebastiano V, Bao G, Porteus MH (2014) Quantifying genome-editing outcomes at endogenous loci with SMRT sequencing. Cell Rep 7:293–305PubMedPubMedCentralCrossRefGoogle Scholar
  56. Hoban MD, Cost GJ, Mendel MC, Romero Z, Kaufman ML, Joglekar AV, Ho M, Lumaquin D, Gray D, Lill GR, Cooper AR, Urbinati F, Senadheera S, Zhu A, Liu PQ, Paschon DE, Zhang L, Rebar EJ, Wilber A, Wang X, Gregory PD, Holmes MC, Reik A, Hollis RP, Kohn DB (2015) Correction of the sickle cell disease mutation in human hematopoietic stem/progenitor cells. Blood 125:2597–2604PubMedPubMedCentralCrossRefGoogle Scholar
  57. Hockemeyer D, Soldner F, Beard C, Gao Q, Mitalipova M, DeKelver RC, Katibah GE, Amora R, Boydston EA, Zeitler B, Meng X, Miller JC, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jaenisch R (2009) Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol 27:851–857PubMedPubMedCentralCrossRefGoogle Scholar
  58. Hockemeyer D, Wang H, Kiani S, Lai CS, Gao Q, Cassady JP, Cost GJ, Zhang L, Santiago Y, Miller JC, Zeitler B, Cherone JM, Meng X, Hinkley SJ, Rebar EJ, Gregory PD, Urnov FD, Jaenisch R (2011) Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol 29:731–734PubMedPubMedCentralCrossRefGoogle Scholar
  59. Hodgkins A, Farne A, Perera S, Grego T, Parry-Smith DJ, Skarnes WC, Iyer V (2015) WGE: a CRISPR database for genome engineering. Bioinformatics 31:3078–3080PubMedPubMedCentralCrossRefGoogle Scholar
  60. Holt N, Wang J, Kim K, Friedman G, Wang X, Taupin V, Crooks GM, Kohn DB, Gregory PD, Holmes MC, Cannon PM (2010) Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol 28:839–847PubMedCentralCrossRefPubMedGoogle Scholar
  61. Hsieh MM, Fitzhugh CD, Tisdale JF (2011) Allogenic hematopoietic stem cell transplantation for sickle cell disease the time is now. Blood 118:1197–1207PubMedPubMedCentralCrossRefGoogle Scholar
  62. Hsieh MM, Fitzhugh CD, Weitzel RP, Link ME, Coles WA, Zhao X, Rodgers GP, Powell JD, Tisdale JF (2014) Nonmyeloablative HLA-matched sibling allogeneic hematopoietic stem cell transplantation for severe sickle cell phenotype. JAMA 312:48–56PubMedPubMedCentralCrossRefGoogle Scholar
  63. Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, Cradick TJ, Marraffini LA, Bao G, Zhang F (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31:827–832PubMedPubMedCentralCrossRefGoogle Scholar
  64. Huang P, Xiao A, Zhou M, Zhu Z, Lin S, Zhang B (2011) Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol 29:699–700PubMedCrossRefGoogle Scholar
  65. Ikeda K, Mason PJ, Bessler M (2011) 3′UTR-truncated Hmga2 cDNA causes MPN-like hematopoiesis by conferring a clonal growth advantage at the level of HSC in mice. Blood 117:5860–5869PubMedPubMedCentralCrossRefGoogle Scholar
  66. Imren S, Payen E, Westerman KA, Pawliuk R, Fabry ME, Eaves CJ, Cavilla B, Wadsworth LD, Beuzard Y, Bouhassira EE, Russell R, London IM, Nagel RL, Leboulch P, Humphries RK (2002) Permanent and panerythroid correction of murine beta thalassemia by multiple lentiviral integration in hematopoietic stem cells. Proc Natl Acad Sci USA 99:14380–14385PubMedPubMedCentralCrossRefGoogle Scholar
  67. Ingram VM (1959) Abnormal human haemoglobins III the chemical difference between normal and sickle cell haemoglobins. Biochim Biophys Acta 36:402–411PubMedCrossRefGoogle Scholar
  68. Jasin M (1996) Genetic manipulation of genomes with rare-cutting endonucleases. Trends Genet 12:224–228PubMedCrossRefGoogle Scholar
  69. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821PubMedCrossRefGoogle Scholar
  70. Joung JK, Sander JD (2013) TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14:49–55PubMedCrossRefGoogle Scholar
  71. Kanter J, Walters MC, Hsieh M, Thompson AA, Krishnamurti L, Kwiatkowski J, Kamble RT, von Kalle C, Kuypers FA, Cavazzana M, Leboulch P, Sandler L, Soni S, Tisdale JF (2015) Initial results from study Hgb-206: a phase 1 study evaluating gene therapy by transplantation of autologous CD34+ stem cells transduced ex vivo with the lentiglobin BB305 lentiviral vector in subjects with severe sickle cell disease. Blood 126:3233Google Scholar
  72. Kauf TL, Coates TD, Huazhi L, Mody-Patel N, Hartzema AG (2009) The cost of health care for children and adults with sickle cell disease. Am J Hematol 84:323–327PubMedCrossRefGoogle Scholar
  73. Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA 93:1156–1160PubMedPubMedCentralCrossRefGoogle Scholar
  74. Kimura Y, Hisano Y, Kawahara A, Higashijima S (2014) Efficient generation of knock-in transgenic zebrafish carrying reporter/driver genes by CRISPR/Cas9-mediated genome engineering. Sci Rep 4:6545PubMedPubMedCentralCrossRefGoogle Scholar
  75. Kinney TR, Helms RW, O’Branski EE, Ohene-Frempong K, Wang W, Daeschner C, Vichinsky E, Redding-Lallinger R, Gee B, Platt OS, Ware RE (1999) Safety of hydroxyurea in children with sickle cell anemia: results of the HUG-KIDS study, a phase I/II trial. Pediatric Hydroxyurea Group. Blood 94:1550–1554PubMedGoogle Scholar
  76. Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, Joung JK (2016) High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529:490–495PubMedPubMedCentralCrossRefGoogle Scholar
  77. Lee YS, Dutta A (2007) The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev 21:1025–1030PubMedPubMedCentralCrossRefGoogle Scholar
  78. Lee CM, Cradick TJ, Bao G (2016a) The Neisseria meningitidis CRISPR-Cas9 system enables specific genome editing in mammalian cells. Mol Ther 24:645–654PubMedPubMedCentralGoogle Scholar
  79. Lee CM, Cradick TJ, Fine EJ, Bao G (2016b) Nuclease target site selection for maximizing on-target activity and minimizing off-target effects in genome editing. Mol Ther 24:475–487PubMedPubMedCentralGoogle Scholar
  80. Lettre G, Sankaran VG, Bezerra MA, Araujo AS, Uda M, Sanna S, Cao A, Schlessinger D, Costa FF, Hirschhorn JN, Orkin SH (2008) DNA polymorphisms at the BCL11A, HBS1L-MYB, and beta-globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease. Proc Natl Acad Sci USA 105:11869–11874PubMedPubMedCentralCrossRefGoogle Scholar
  81. Levasseur DN, Ryan TM, Pawlik KM, Townes TM (2003) Correction of a mouse model of sickle cell disease: lentiviral/antisickling beta-globin gene transduction of unmobilized, purified hematopoietic stem cells. Blood 102:4312–4319PubMedCrossRefGoogle Scholar
  82. Li D, Qiu Z, Shao Y, Chen Y, Guan Y, Liu M, Li Y, Gao N, Wang L, Lu X, Zhao Y, Liu M (2013a) Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nat Biotechnol 31:681–683PubMedCrossRefGoogle Scholar
  83. Li J-F, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J (2013b) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31:688–691PubMedPubMedCentralCrossRefGoogle Scholar
  84. Li W, Teng F, Li T, Zhou Q (2013c) Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nat Biotechnol 31:684–686PubMedCrossRefGoogle Scholar
  85. Lin Y, Cradick TJ, Brown MT, Deshmukh H, Ranjan P, Sarode N, Wile BM, Vertino PM, Stewart FJ, Bao G (2014a) CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Res 42:7473–7485PubMedPubMedCentralCrossRefGoogle Scholar
  86. Lin Y, Fine EJ, Zheng Z, Antico CJ, Voit RA, Porteus MH, Cradick TJ, Bao G (2014b) SAPTA: a new design tool for improving TALE nuclease activity. Nucleic Acids Res 42:e47PubMedPubMedCentralCrossRefGoogle Scholar
  87. Locatelli F, Kabbara N, Ruggeri A, Ghavamzadeh A, Roberts I, Li CK, Bernaudin F, Vermylen C, Dalle JH, Stein J, Wynn R, Cordonnier C, Pinto F, Angelucci E, Socie G, Gluckman E, Walters MC, Rocha V (2013) Outcome of patients with hemoglobinopathies given either cord blood or bone marrow transplantation from an HLA-identical sibling. Blood 122:1072–1078PubMedCrossRefGoogle Scholar
  88. Lombardo A, Genovese P, Beausejour CM, Colleoni S, Lee Y-L, Kim KA, Ando D, Urnov FD, Galli C, Gregory PD, Holmes MC, Naldini L (2007) Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol 25:1298–1306PubMedCrossRefGoogle Scholar
  89. Mahfouz MM, Li L, Shamimuzzaman M, Wibowo A, Fang X, Zhu JK (2011) De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc Natl Acad Sci USA 108:2623–2628PubMedPubMedCentralCrossRefGoogle Scholar
  90. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826PubMedPubMedCentralCrossRefGoogle Scholar
  91. Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL (2015) Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol 33:538–542PubMedPubMedCentralCrossRefGoogle Scholar
  92. Masuda T, Wang X, Maeda M, Canver MC, Sher F, Funnell APW, Fisher C, Suciu M, Martyn GE, Norton LJ, Zhu R, Kurita R, Nakamura Y, Xu J, Higgs DR, Crossley M, Bauer DE, Orkin SH, Kharchenko PV, Maeda T (2015) The LRF/ZBTB7A transcription factor is a BCL11A-independent repressor of fetal hemoglobin. Blood 126:2CrossRefGoogle Scholar
  93. Masuda T, Wang X, Maeda M, Canver MC, Sher F, Funnell AP, Fisher C, Suciu M, Martyn GE, Norton LJ, Zhu C, Kurita R, Nakamura Y, Xu J, Higgs DR, Crossley M, Bauer DE, Orkin SH, Kharchenko PV, Maeda T (2016) Transcription factors LRF and BCL11A independently repress expression of fetal hemoglobin. Science 351:285–289PubMedPubMedCentralCrossRefGoogle Scholar
  94. May C, Rivella S, Callegarl J, Heller G, Gaensler KML, Luzzatto L, Sadelain M (2000) Therapeutic haemoglobin synthesis in β-thalassaemic mice expressing lentivirus-encoded human β-globin. Nature 406:82–86PubMedCrossRefGoogle Scholar
  95. Meng X, Noyes M, Zhu LJ, Lawson ND, Wolfe SA (2008) Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol 26:695–701PubMedPubMedCentralCrossRefGoogle Scholar
  96. Meyer M, de Angelis MH, Wurst W, Kühn R (2010) Gene targeting by homologous recombination in mouse zygote mediated by zinc-finger nucleases. Proc Natl Acad Sci USA 107:15022–15026PubMedPubMedCentralCrossRefGoogle Scholar
  97. Miller JC, Holmes MC, Wang J, Guschin DY, Lee YL, Rupniewski I, Beausejour CM, Waite AJ, Wang NS, Kim KA, Gregory PD, Pabo CO, Rebar EJ (2007) An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol 25:778–785PubMedCrossRefGoogle Scholar
  98. Modell B, Darlison M (2008) Global epidemiology of haemolgobin disorders and derived service indicators. Bull World Health Organ 86:480–487PubMedPubMedCentralCrossRefGoogle Scholar
  99. Montague TG, Cruz JM, Gagnon JA, Church GM, Valen E (2014) CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res 42:W401–W407PubMedPubMedCentralCrossRefGoogle Scholar
  100. Morton J, Davis MW, Jorgensen EM, Carroll D (2006) Induction and repair of zinc-finger nuclease-targeted double-strand breaks in Caenorhabditis elegans somatic cells. Proc Natl Acad Sci USA 103:16370–16375PubMedPubMedCentralCrossRefGoogle Scholar
  101. Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326:1501PubMedCrossRefGoogle Scholar
  102. Nagel RL, Bookchin RM, Johnson J, Labie D, Wajcman H, Isaac-Sodeye WA, Honig GR, Schiliro G, Crookston JH, Matsutomo K (1979) Structural bases of the inhibitory effects of hemoglobin F and hemoglobin A2 on the polymerization of hemoglobin S. Proc Natl Acad Sci USA 76:670–672PubMedPubMedCentralCrossRefGoogle Scholar
  103. Neff KL, Argue DP, Ma AC, Lee HB, Clark KJ, Ekker SC (2013) Mojo Hand, a TALEN design tool for genome editing applications. BMC Bioinform 14:1CrossRefGoogle Scholar
  104. Negre O, Bartholomae C, Beuzard Y, Cavazzana M, Christiansen L, Courne C, Deichmann A, Denaro M, de Dreuzy E, Finer M, Fronza R, Gillet-Legrand B, Joubert C, Kutner R, Leboulch P, Maouche L, Paulard A, Pierciey FJ, Rothe M, Ryu B, Schmidt M, von Kalle C, Payen E, Veres G (2015) Preclinical evaluation of efficacy and safety of an improved lentiviral vector for the treatment of beta-thalassemia and sickle cell disease. Curr Gene Ther 15:64–81PubMedPubMedCentralCrossRefGoogle Scholar
  105. Nekrasov V, Staskawicz B, Weigel D, Jones JDG, Kamoun S (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31:691–693PubMedCrossRefGoogle Scholar
  106. Paszty C, Brion CM, Manci E, Witkowska HE, Stevens ME, Mohandas N, Rubin EM (1997) Transgenic knockout mice with exclusively human sickle hemoglobin and sickle cell disease. Science 278:876–878PubMedCrossRefGoogle Scholar
  107. Pavletich N, Pabo C (1991) Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science 252:809–817PubMedCrossRefGoogle Scholar
  108. Pawliuk R, Westerman KA, Fabry ME, Payen E, Tighe R, Bouhassira EE, Acharya SA, Ellis J, London IM, Eaves CJ, Humphries RK, Beuzard Y, Nagel RL, Leboulch P (2001) Correction of sickle cell disease in transgenic mouse models by gene therapy. Science 294:2368–2371PubMedCrossRefGoogle Scholar
  109. Payen E, Leboulch P (2012) Advances in stem cell transplantation and gene therapy in the beta-hemoglobinopathies. Hematol Am Soc Hematol Educ Prog 2012:276–283Google Scholar
  110. Person DA, Hargrove PW, Allay ER, Hanawa H, Nienhuis AW (2003) The degree of phenotypic correction of murine β-thalassemia intermedia following lentiviral-mediated transfer of a human ɣ-globin gene is influenced by chromosomal position effects and vector copy number. Blood 101:2175–2183CrossRefGoogle Scholar
  111. Piel FB, Hay SI, Gupta S, Weatherall DJ, Williams TN (2013a) Global burden of sickle cell anaemia in children under five, 2010–2050: modelling based on demographics, excess mortality, and interventions. PLoS Med 10:e1001484PubMedPubMedCentralCrossRefGoogle Scholar
  112. Piel FB, Patil AP, Howes RE, Nyangiri OA, Gething PW, Dewi M, Temperley WH, Williams TN, Weatherall DJ, Hay SI (2013b) Global epidemiology of sickle haemoglobin in neonates: a contemporary geostatistical model-based map and population estimates. Lancet 381:142–151PubMedPubMedCentralCrossRefGoogle Scholar
  113. Platt OS, Thorington BD, Brambilla DJ, Milner PF, Rosse WF, Vichinsky E, Kinney TR (1991) Pain in sickle cell disease. Rates and risk factors. N Engl J Med 325:11–16PubMedCrossRefGoogle Scholar
  114. Platt OS, Brambilla DJ, Rosse WF, Milner PF, Castro O, Steinberg MH, Klug PP (1994) Mortality in sickle cell disease. Life expectancy and risk factors for early death. N Engl J Med 330:1639–1644PubMedCrossRefGoogle Scholar
  115. Porteus MH, Baltimore D (2003) Chimeric nucleases stimulate gene targeting in human cells. Science 300:763PubMedCrossRefGoogle Scholar
  116. Powars DR, Weiss JN, Chan LS, Schroeder WA (1984) Is there a threshold level of fetal hemoglobin that ameliorates morbidity in sickle cell anemia? Blood 63:921–926PubMedGoogle Scholar
  117. Puthenveetil G, Scholes J, Carbonell D, Qureshi N, Xia P, Zeng I, Li S, Yu Y, Hiti AL, Yee J-K, Malik P (2004) Successful correction of the human β-thalassemia major phenotype using a lentiviral vector. Blood 104:3445–3453PubMedCrossRefGoogle Scholar
  118. Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, Zhang F (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154:1380–1389PubMedPubMedCentralCrossRefGoogle Scholar
  119. Rivella S, May C, Chadburn A, Riviere I, Sadelain M (2003) A novel murine model of Cooley anemia and its rescue by lentiviral-mediated human beta-globin gene transfer. Blood 101:2932–2939PubMedCrossRefGoogle Scholar
  120. Riviere I, Dunbar CE, Sadelain M (2012) Hematopoietic stem cell engineering at a crossroads. Blood 119:1107–1116PubMedPubMedCentralCrossRefGoogle Scholar
  121. Rouet P, Smih F, Jasin M (1994) Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc Natl Acad Sci USA 91:6064–6068PubMedPubMedCentralCrossRefGoogle Scholar
  122. Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32:347–355PubMedPubMedCentralCrossRefGoogle Scholar
  123. Sander JD, Zaback P, Joung JK, Voytas DF, Dobbs D (2007) Zinc finger targeter (ZiFiT): an engineered zinc finger/target site design tool. Nucleic Acids Res 35:W599–W605PubMedPubMedCentralCrossRefGoogle Scholar
  124. Sander JD, Maeder ML, Reyon D, Voytas DF, Joung JK, Dobbs D (2010) ZiFiT (Zinc Finger Targeter): an updated zinc finger engineering tool. Nucleic Acids Res 38:W462–W468PubMedPubMedCentralCrossRefGoogle Scholar
  125. Sankaran VG, Menne TF, Xu J, Akie TE, Lettre G, Van Handel B, Mikkola HK, Hirschhorn JN, Cantor AB, Orkin SH (2008) Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science 322:1839–1842PubMedCrossRefGoogle Scholar
  126. Sankaran VG, Xu J, Ragoczy T, Ippolito GC, Walkley CR, Maika SD, Fujiwara Y, Ito M, Groudine M, Bender MA, Tucker PW, Orkin SH (2009) Developmental and species-divergent globin switching are driven by BCL11A. Nature 460:1093–1097PubMedPubMedCentralCrossRefGoogle Scholar
  127. Sebastiano V, Maeder ML, Angstman JF, Haddad B, Khayter C, Yeo DT, Goodwin MJ, Hawkins JS, Ramirez CL, Batista LFZ, Artandi SE, Wernig M, Joung JK (2011) In situ genetic correction of the sickle cell anemia mutation in human induced pluripotent stem cells using engineered zinc finger nucleases. Stem Cells 29:1717–1726PubMedPubMedCentralCrossRefGoogle Scholar
  128. Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu J-L, Gao C (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686–688PubMedCrossRefGoogle Scholar
  129. Shrivastav M, De Haro LP, Nickoloff JA (2008) Regulation of DNA double-strand break repair pathway choice. Cell Res 18:134–147PubMedCrossRefGoogle Scholar
  130. Skow LC, Burkhart BA, Johnson FM, Popp RA, Popp DM, Goldberg SZ, Anderson WF, Barnett LB, Lewis SE (1983) A mouse model for beta-thalassemia. Cell 34:1043–1052PubMedCrossRefGoogle Scholar
  131. Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F (2016) Rationally engineered Cas9 nucleases with improved specificity. Science 351:84–88PubMedCrossRefGoogle Scholar
  132. Smih F, Rouet P, Romanienko PJ, Jasin M (1995) Double-strand breaks at the target locus stimulate gene targeting in embryonic stem cells. Nucleic Acids Res 23:5012–5019PubMedPubMedCentralCrossRefGoogle Scholar
  133. Smith J, Bibikova M, Whitby FG, Reddy AR, Chandrasegaran S, Carroll D (2000) Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Res 28:3361–3369PubMedPubMedCentralCrossRefGoogle Scholar
  134. Steinberg MHE, Embury SHE (1994) Sickle cell disease basic principles and clinical practice, I edn. Raven Press, New YorkGoogle Scholar
  135. Steinberg MH, Barton F, Castro O, Pegelow CH, Ballas SK, Kutlar A, Orringer E, Bellevue R, Olivieri N, Eckman J, Varma M, Ramirez G, Adler B, Smith W, Carlos T, Ataga K, DeCastro L, Bigelow C, Saunthararajah Y, Telfer M, Vichinsky E, Claster S, Shurin S, Bridges K, Waclawiw M, Bonds D, Terrin M (2003) Effect of hydroxyurea on mortality and morbidity in adult sickle cell anemia: risks and benefits up to 9 years of treatment. JAMA 289:1645–1651PubMedCrossRefGoogle Scholar
  136. Sun N, Liang J, Abil Z, Zhao H (2012) Optimized TAL effector nucleases (TALENs) for use in treatment of sickle cell disease. Mol BioSyst 8:1255–1263PubMedCrossRefGoogle Scholar
  137. Szczepek M, Brondani V, Buchel J, Serrano L, Segal DJ, Cathomen T (2007) Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol 25:786–793PubMedCrossRefGoogle Scholar
  138. Talbot D, Collis P, Antoniou M, Vidal M, Grosveld F, Greaves DR (1989) A dominant control region from the human beta-globin locus conferring integration site-independent gene expression. Nature 338:352–355PubMedCrossRefGoogle Scholar
  139. Tebas P, Stein D, Tang WW, Frank I, Wang SQ, Lee G, Spratt SK, Surosky RT, Giedlin MA, Nichol G, Holmes MC, Gregory PD, Ando DG, Kalos M, Collman RG, Binder-Scholl G, Plesa G, Hwang WT, Levine BL, June CH (2014) Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 370:901–910PubMedPubMedCentralCrossRefGoogle Scholar
  140. Thompson AA, Rasko JE, Hongeng S, Kwiatkowski JL, Schiller G, von Kalle C, Cavazzana M, Leboulch P, Petrusich A, Soni S, Walters MC (2014) Initial results from the Northstar Study (HGB-204): a phase 1/2 study of gene therapy for β-thalassemia major via transplantation of autologous hematopoietic stem cells transduced ex vivo with a lentiviral βΑ-T87Q-globin vector. Blood 124:549Google Scholar
  141. Trudel M, Saadane N, Garel MC, Bardakdjian-Michau J, Blouquit Y, Guerquin-Kern JL, Rouyer-Fessard P, Vidaud D, Pachnis A, Romeo PH et al (1991) Towards a transgenic mouse model of sickle cell disease: hemoglobin SAD. EMBO J 10:3157–3165PubMedPubMedCentralGoogle Scholar
  142. Tuan D, London IM (1984) Mapping of DNase I-hypersensitive sites in the upstream DNA of human embryonic epsilon-globin gene in K562 leukemia cells. Proc Natl Acad Sci USA 81:2718–2722PubMedPubMedCentralCrossRefGoogle Scholar
  143. Tuan D, Solomon W, Li Q, London IM (1985) The “beta-like-globin” gene domain in human erythroid cells. Proc Natl Acad Sci USA 82:6384–6388PubMedCentralCrossRefPubMedGoogle Scholar
  144. Uda M, Galanello R, Sanna S, Lettre G, Sankaran VG, Chen W, Usala G, Busonero F, Maschio A, Albai G, Piras MG, Sestu N, Lai S, Dei M, Mulas A, Crisponi L, Naitza S, Asunis I, Deiana M, Nagaraja R, Perseu L, Satta S, Cipollina MD, Sollaino C, Moi P, Hirschhorn JN, Orkin SH, Abecasis GR, Schlessinger D, Cao A (2008) Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of beta-thalassemia. Proc Natl Acad Sci USA 105:1620–1625PubMedPubMedCentralCrossRefGoogle Scholar
  145. Urnov FD, Miller JC, Lee Y-L, Beausejour CM, Rock JM, Augustus S, Jamieson AC, Porteus MH, Gregory PD, Holmes MC (2005) Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435:646–651PubMedCrossRefGoogle Scholar
  146. Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11:636–646PubMedCrossRefGoogle Scholar
  147. Urnov FD, Reik A, Vierstra J, Chang K-H, Zhou Y, Mich A, Adrian J, Fox L, Psatha N, Tan S, Yannaki E, Craig S, Rebar EJ, Stamatoyannopoulos J, Papayannopoulou T, Stamatoyannopoulos G, Jiang H (2015) Clinical-scale genome editing of the human BCL11A erythroid enhancer for treatment of the hemoglobinopathies. Blood 126:204Google Scholar
  148. van Assendelft GB, Hanscombe O, Grosveld F, Greaves DR (1989) The β-globin dominant control region activates homologous and heterologous promoters in a tissue-specific manner. Cell 56:969–977CrossRefGoogle Scholar
  149. Vichinsky EP (2005) Changing patterns of thalassemia worldwide. Ann N Y Acad Sci 1054:18–24PubMedCrossRefGoogle Scholar
  150. Vigna E, Naldini L (2000) Lentiviral vectors: excellent tools for experimental gene transfer and promising candidates for gene therapy. J Gene Med 2:308–316PubMedCrossRefGoogle Scholar
  151. Voit RA, Hendel A, Pruett-Miller SM, Porteus MH (2014) Nuclease-mediated gene editing by homologous recombination of the human globin locus. Nucleic Acids Res 42:1365–1378PubMedCrossRefGoogle Scholar
  152. Walters MC, Patience M, Leisenring W, Eckman JR, Buchanan GR, Rogers ZR, Olivieri NE, Vichinsky E, Davies SC, Mentzer WC, Powars D, Scott JP, Bernaudin F, Ohene-Frempong K, Darbyshire PJ, Wayne A, Roberts IA, Dinndorf P, Brandalise S, Sanders JE, Matthews DC, Appelbaum FR, Storb R, Sullivan KM (1996a) Barriers to bone marrow transplantation for sickle cell anemia. Biol Blood Marrow Transplant 2:100–104PubMedGoogle Scholar
  153. Walters MC, Patience M, Leisenring W, Eckman JR, Scott JP, Mentzer WC, Davies SC, Ohene-Frempong K, Bernaudin F, Matthews DC, Storb R, Sullivan KM (1996b) Bone marrow transplantation for sickle cell disease. N Engl J Med 335:369–376PubMedCrossRefGoogle Scholar
  154. Walters MC, Storb R, Patience M, Leisenring W, Taylor T, Sanders JE, Buchanan GE, Rogers ZR, Dinndorf P, Davies SC, Roberts IA, Dickerhoff R, Yeager AM, Hsu L, Kurtzberg J, Ohene-Frempong K, Bunin N, Bernaudin F, Wong WY, Scott JP, Margolis D, Vichinsky E, Wall DA, Wayne AS, Pegelow C, Redding-Lallinger R, Wiley J, Klemperer M, Mentzer WC, Smith FO, Sullivan KM (2000) Impact of bone marrow transplantation for symptomatic sickle cell disease: an interim report. Multicenter investigation of bone marrow transplantation for sickle cell disease. Blood 95:1918–1924PubMedGoogle Scholar
  155. Walters MC, Rasko J, Hongeng S, Kwiatkowski J, Schiller GJ, Kletzel M, Ho PJ, Vichinsky E, von Kalle C, Cavazzana M, Leboulch P, Petrusich A, Soni S, Thompson AA (2015) Update of results from the Northstar Study (HGB-204): a phase 1/2 study of gene therapy for beta-thalassemia major via transplantation of autologous hematopoietic stem cells transduced ex-vivo with a lentiviral beta AT87Q-globin vector. Blood 126:201CrossRefGoogle Scholar
  156. Wang GP, Berry CC, Malani N, Leboulch P, Fischer A, Hacein-Bey-Abina S, Cavazzana-Calvo M, Bushman FD (2010) Dynamics of gene-modified progenitor cells analyzed by tracking retroviral integration sites in a human SCID-X1 gene therapy trial. Blood 115:4356–4366PubMedPubMedCentralCrossRefGoogle Scholar
  157. Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910–918PubMedPubMedCentralCrossRefGoogle Scholar
  158. Weatherall DJ (2010) The inherited diseases of hemoglobin are an emerging global health burden. Blood 115:4331–4336PubMedPubMedCentralCrossRefGoogle Scholar
  159. Weatherall DJ, Clegg JB (2001) The thalassaemia syndromes, 4th edn. Blackwell Science, MaldenCrossRefGoogle Scholar
  160. WHO (2010) World Health Organization Regional Office for Africa. Sickle-cell disease: a strategy for the WHO African region. Report of the Regional Director. World Health Organization Regional Office for Africa.
  161. Wood AJ, T-w Lo, Zeitler B, Pickle CS, Ralston EJ, Lee AH, Amora R, Miller JC, Leung E, Meng X, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Meyer BJ (2011) Targeted genome editing across species using ZFNs and TALENs. Science 333:307PubMedPubMedCentralCrossRefGoogle Scholar
  162. Wright S, Rosenthal A, Flavell R, Grosveld F (1984) DNA sequences required for regulated expression of beta-globin genes in murine erythroleukemia cells. Cell 38:265–273PubMedCrossRefGoogle Scholar
  163. Wu LC, Sun CW, Ryan TM, Pawlik KM, Ren J, Townes TM (2006) Correction of sickle cell disease by homologous recombination in embryonic stem cells. Blood 108:1183–1188PubMedPubMedCentralCrossRefGoogle Scholar
  164. Xie S, Shen B, Zhang C, Huang X, Zhang Y (2014) sgRNAcas9: a software package for designing CRISPR sgRNA and evaluating potential off-target cleavage sites. PLoS One 9:e100448PubMedPubMedCentralCrossRefGoogle Scholar
  165. Yang B, Kirby S, Lewis J, Detloff PJ, Maeda N, Smithies O (1995) A mouse model for beta 0-thalassemia. Proc Natl Acad Sci USA 92:11608–11612PubMedPubMedCentralCrossRefGoogle Scholar
  166. Yawn BP, Buchanan GR, Afenyi-Annan AN, Ballas SK, Hassell KL, James AH, Jordan L, Lanzkron SM, Lottenberg R, Savage WJ, Tanabe PJ, Ware RE, Murad MH, Goldsmith JC, Ortiz E, Fulwood R, Horton A, John-Sowah J (2014) Management of sickle cell disease: summary of the 2014 evidence-based report by expert panel members. JAMA 312:1033–1048PubMedCrossRefGoogle Scholar
  167. Yusa K, Rashid ST, Strick-Marchand H, Varela I, Liu P-Q, Paschon DE, Miranda E, Ordonez A, Hannan NRF, Rouhani FJ, Darche S, Alexander G, Marciniak SJ, Fusaki N, Hasegawa M, Holmes MC, Di Santo JP, Lomas DA, Bradley A, Vallier L (2011) Targeted gene correction of [agr]1-antitrypsin deficiency in induced pluripotent stem cells. Nature 478:391–394PubMedPubMedCentralCrossRefGoogle Scholar
  168. Zetsche B, Gootenberg Jonathan S, Abudayyeh Omar O, Slaymaker Ian M, Makarova Kira S, Essletzbichler P, Volz Sara E, Joung J, van der Oost J, Regev A, Koonin Eugene V, Zhang F (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771PubMedCrossRefGoogle Scholar
  169. Zhu LJ, Holmes BR, Aronin N, Brodsky MH (2014) CRISPRseek: a bioconductor package to identify target-specific guide RNAs for CRISPR-Cas9 genome-editing systems. PLoS One 9:e108424PubMedPubMedCentralCrossRefGoogle Scholar
  170. Zimmerman SA, Schultz WH, Davis JS, Pickens CV, Mortier NA, Howard TA, Ware RE (2004) Sustained long-term hematologic efficacy of hydroxyurea at maximum tolerated dose in children with sickle cell disease. Blood 103:2039–2045PubMedCrossRefGoogle Scholar
  171. Zou J, Mali X, Dowey SN, Cheng L (2011) Site specific gene correction of the a point mutation in human IPS cells derived from an adult patient with sickle disease. Gene Ther 118:4599–4608Google Scholar
  172. Zuris JA, Thompson DB, Shu Y, Guilinger JP, Bessen JL, Hu JH, Maeder ML, Joung JK, Chen ZY, Liu DR (2015) Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol 33:73–80PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Bioengineering ProgramClemson University and Medical University of South CarolinaCharlestonUSA
  2. 2.Department of BioengineeringRice UniversityHoustonUSA

Personalised recommendations