Human Genetics

, Volume 135, Issue 9, pp 983–992 | Cite as

Impact of gene editing on the study of cystic fibrosis

  • Patrick T. Harrison
  • David J. Sanz
  • Jennifer A. Hollywood
Part of the following topical collections:
  1. Genome Editing


Cystic fibrosis (CF) is a chronic and progressive autosomal recessive disorder of secretory epithelial cells, which causes obstructions in the lung airways and pancreatic ducts of 70,000 people worldwide (for recent review see Cutting Nat Rev Genet 16(1):45–56, 2015). The finding that mutations in the CFTR gene cause CF (Kerem et al. Science 245(4922):1073–1080, 1989; Riordan et al. Science 245(4922):1066–1073, 1989; Rommens et al. Science 245(4922):1059–1065, 1989), was hailed as the very happy middle of a story whose end is a cure for a fatal disease (Koshland Science 245(4922):1029, 1989). However, despite two licensed drugs (Ramsey et al. N Engl J Med 365(18):1663–1672, 2011; Wainwright et al. N Engl J Med 373(3):220–231, 2015), and a formal demonstration that repeated administration of CFTR cDNA to patients is safe and effects a modest but significant stabilisation of disease (Alton et al. Lancet Respir Med 3(9):684–691, 2015), we are still a long way from a cure, with many patients taking over 100 tablets per day, and a mean age at death of 28 years. The aim of this review is to discuss the impact on the study of CF of gene-editing techniques as they have developed over the last 30 years, up to and including the possibility of editing as a therapeutic approach.


Cystic Fibrosis Duchenne Muscular Dystrophy Cystic Fibrosis Patient Gene Editing Airway Surface Liquid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alton EW, Armstrong DK, Ashby D, Bayfield KJ, Bilton D, Bloomfield EV, Boyd AC, Brand J, Buchan R, Calcedo R, Carvelli P, Chan M, Cheng SH, Collie DD, Cunningham S, Davidson HE, Davies G, Davies JC, Davies LA, Dewar MH, Doherty A, Donovan J, Dwyer NS, Elgmati HI, Featherstone RF, Gavino J, Gea-Sorli S, Geddes DM, Gibson JS, Gill DR, Greening AP, Griesenbach U, Hansell DM, Harman K, Higgins TE, Hodges SL, Hyde SC, Hyndman L, Innes JA, Jacob J, Jones N, Keogh BF, Limberis MP, Lloyd-Evans P, Maclean AW, Manvell MC, McCormick D, McGovern M, McLachlan G, Meng C, Montero MA, Milligan H, Moyce LJ, Murray GD, Nicholson AG, Osadolor T, Parra-Leiton J, Porteous DJ, Pringle IA, Punch EK, Pytel KM, Quittner AL, Rivellini G, Saunders CJ, Scheule RK, Sheard S, Simmonds NJ, Smith K, Smith SN, Soussi N, Soussi S, Spearing EJ, Stevenson BJ, Sumner-Jones SG, Turkkila M, Ureta RP, Waller MD, Wasowicz MY, Wilson JM, Wolstenholme-Hogg P; UK Cystic Fibrosis Gene Therapy Consortium (2015) Repeated nebulisation of non-viral CFTR gene therapy in patients with cystic fibrosis: a randomised, double-blind, placebo-controlled, phase 2b trial. Lancet Respir Med 3(9):684–691CrossRefPubMedPubMedCentralGoogle Scholar
  2. Butler CR, Hynds RE, Gowers KH, Lee DD, Brown JM, Crowley C, Teixeira VH, Smith CM, Urbani L, Hamilton NJ, Thakrar RM, Booth HL, Birchall MA, De Coppi P, Giangreco A, O’Callaghan C, Janes SM (2016) Rapid expansion of human epithelial stem cells suitable for airway tissue engineering. Am J Respir Crit Care Med. doi: 10.1164/rccm.201507-1414OC PubMedGoogle Scholar
  3. Cai Y, Bak RO, Mikkelsen JG (2014) Targeted genome editing by lentiviral protein transduction of zinc-finger and TAL-effector nucleases. Elife 3:e01911CrossRefPubMedPubMedCentralGoogle Scholar
  4. Campbell KH, McWhir J, Ritchie WA, Wilmut I (1996) Sheep cloned by nuclear transfer from a cultured cell line. Nature 380(6569):64–66CrossRefPubMedGoogle Scholar
  5. Cao H, Machuca TN, Yeung JC, Wu J, Du K, Duan C, Hashimoto K, Linacre V, Coates AL, Leung K, Wang J, Yeger H, Cutz E, Liu M, Keshavjee S, Hu J (2013) Efficient gene delivery to pig airway epithelia and submucosal glands using helper-dependent adenoviral vectors. Mol Ther Nucleic Acids 2:e127. doi: 10.1038/mtna.2013.55 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cao H, Wu J, Duan C, Du K, Lee CM, Yeger H, Hu J (2016) Long-term expression of the human cftr gene in mouse airway via helper-dependent adenoviral vector delivery and transient immunosuppression. Hum Gene Ther 27(1):83–91. doi: 10.1089/hum.2015.108 CrossRefPubMedGoogle Scholar
  7. Castellani C, CFTR2 team (2013) CFTR2: how will it help care? Paediatr Respir Rev 14(Suppl 1):2–5CrossRefPubMedGoogle Scholar
  8. Cathomen T (2004) AAV vectors for gene correction. Curr Opin Mol Ther 6(4):360–366PubMedGoogle Scholar
  9. Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39(12):e82. doi: 10.1093/nar/gkr218 (Epub 2011 Apr 14. Erratum in: Nucleic Acids Res. 39(17):7879) CrossRefPubMedPubMedCentralGoogle Scholar
  10. Choi JG, Dang Y, Abraham S, Ma H, Zhang J, Guo H, Cai Y, Mikkelsen JG, Wu H, Shankar P, Manjunath N (2016) Lentivirus pre-packed with Cas9 protein for safer gene editing. Gene Ther. doi: 10.1038/gt.2016.27 Google Scholar
  11. Chu CS, Trapnell BC, Curristin SM, Cutting GR, Crystal RG (1992) Extensive posttranscriptional deletion of the coding sequences for part of nucleotide-binding fold 1 in respiratory epithelial mRNA transcripts of the cystic fibrosis transmembrane conductance regulator gene is not associated with the clinical manifestations of cystic fibrosis. J Clin Invest 90(3):785–790CrossRefPubMedPubMedCentralGoogle Scholar
  12. Colledge WH, Abella BS, Southern KW, Ratcliff R, Jiang C, Cheng SH, MacVinish LJ, Anderson JR, Cuthbert AW, Evans MJ (1995) Generation and characterization of a delta F508 cystic fibrosis mouse model. Nat Genet 10(4):445–452CrossRefPubMedGoogle Scholar
  13. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823CrossRefPubMedPubMedCentralGoogle Scholar
  14. Corvol H, Blackman SM, Boëlle PY, Gallins PJ, Pace RG, Stonebraker JR, Accurso FJ, Clement A, Collaco JM, Dang H, Dang AT, Franca A, Gong J, Guillot L, Keenan K, Li W, Lin F, Patrone MV, Raraigh KS, Sun L, Zhou YH, O’Neal WK, Sontag MK, Levy H, Durie PR, Rommens JM, Drumm ML, Wright FA, Strug LJ, Cutting GR, Knowles MR (2015) Genome-wide association meta-analysis identifies five modifier loci of lung disease severity in cystic fibrosis. Nat Commun 6:8382CrossRefPubMedPubMedCentralGoogle Scholar
  15. Corvol H, Thompson KE, Tabary O, le Rouzic P, Guillot L (2016) Translating the genetics of cystic fibrosis to personalized medicine. Transl Res 168:40–49CrossRefPubMedGoogle Scholar
  16. Crane AM, Kramer P, Bui JH, Chung WJ, Li XS, Gonzalez-Garay ML, Hawkins F, Liao W, Mora D, Choi S, Wang J, Sun HC, Paschon DE, Guschin DY, Gregory PD, Kotton DN, Holmes MC, Sorscher EJ, Davis BR (2014) Targeted correction and restored function of the CFTR gene in cystic fibrosis induced pluripotent stem cells. Stem Cell Rep 4(4):569–577CrossRefGoogle Scholar
  17. Cutting GR (2015) Cystic fibrosis genetics: from molecular understanding to clinical application. Nat Rev Genet 16(1):45–56CrossRefPubMedGoogle Scholar
  18. De Boer DA, Ritsema T (2014) Oligonucleotides for making a change in the sequence of a target RNA molecule present in a living cell. Patent WO 2014011053 A1Google Scholar
  19. Dominguez AA, Lim WA, Qi LS (2016) Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation. Nat Rev Mol Cell Biol 17(1):5–15CrossRefPubMedGoogle Scholar
  20. Dorin JR, Dickinson P, Alton EW, Smith SN, Geddes DM, Stevenson BJ, Kimber WL, Fleming S, Clarke AR, Hooper ML, Anderson L, Beddington RSP, Porteous DJ (1992) Cystic fibrosis in the mouse by targeted insertional mutagenesis. Nature 359(6392):211–215CrossRefPubMedGoogle Scholar
  21. Dreier B, Beerli RR, Segal DJ, Flippin JD, Barbas CF 3rd (2001) Development of zinc finger domains for recognition of the 5′-ANN-3′ family of DNA sequences and their use in the construction of artificial transcription factors. J Biol Chem 276(31):29466–29478CrossRefPubMedGoogle Scholar
  22. Drumm ML, Pope HA, Cliff WH, Rommens JM, Marvin SA, Tsui LC, Collins FS, Frizzell RA, Wilson JM (1990) Correction of the cystic fibrosis defect in vitro by retrovirus-mediated gene transfer. Cell 62(6):1227–1233CrossRefPubMedGoogle Scholar
  23. Farinha CM, Matos P (2016) Repairing the basic defect in cystic fibrosis—one approach is not enough. FEBS J 283(2):246–264CrossRefPubMedGoogle Scholar
  24. Firth AL, Menon T, Parker GS, Qualls SJ, Lewis BM, Ke E, Dargitz CT, Wright R, Khanna A, Gage FH, Verma IM (2015) Functional gene correction for cystic fibrosis in lung epithelial cells generated from patient iPSCs. Cell Rep 12(9):1385–1390CrossRefPubMedPubMedCentralGoogle Scholar
  25. Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM, Jenkins SS, Wood A, Cui X, Meng X, Vincent A, Lam S, Michalkiewicz M, Schilling R, Foeckler J, Kalloway S, Weiler H, Ménoret S, Anegon I, Davis GD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jacob HJ, Buelow R (2009) Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325(5939):433CrossRefPubMedPubMedCentralGoogle Scholar
  26. Goncz KK, Kunzelmann K, Xu Z, Gruenert DC (1998) Targeted replacement of normal and mutant CFTR sequences in human airway epithelial cells using DNA fragments. Hum Mol Genet 7(12):1913–1919CrossRefPubMedGoogle Scholar
  27. Goncz KK, Colosimo A, Dallapiccola B, Gagné L, Hong K, Novelli G, Papahadjopoulos D, Sawa T, Schreier H, Wiener-Kronish J, Xu Z, Gruenert DC (2001) Expression of DeltaF508 CFTR in normal mouse lung after site-specific modification of CFTR sequences by SFHR. Gene Ther 8(12):961–965CrossRefPubMedGoogle Scholar
  28. Gosalia N, Harris A (2015) Chromatin dynamics in the regulation of CFTR expression. Genes (Basel) 6(3):543–558Google Scholar
  29. Gray MA, Plant S, Argent BE (1993) cAMP-regulated whole cell chloride currents in pancreatic duct cells. Am J Physiol 264(3 Pt 1):C591–C602PubMedGoogle Scholar
  30. Gregory RJ, Cheng SH, Rich DP, Marshall J, Paul S, Hehir K, Ostedgaard L, Klinger KW, Welsh MJ, Smith AE (1990) Expression and characterization of the cystic fibrosis transmembrane conductance regulator. Nature 347(6291):382–386CrossRefPubMedGoogle Scholar
  31. Harrison MJ, Murphy DM, Plant BJ (2013) Ivacaftor in a G551D homozygote with cystic fibrosis. N Engl J Med 369(13):1280–1282CrossRefPubMedGoogle Scholar
  32. Holkers M, Maggio I, Henriques SF, Janssen JM, Cathomen T, Gonçalves MA (2014) Adenoviral vector DNA for accurate genome editing with engineered nucleases. Nat Methods 11(10):1051–1057CrossRefPubMedGoogle Scholar
  33. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821CrossRefPubMedGoogle Scholar
  34. Johnson LG, Olsen JC, Sarkadi B, Moore KL, Swanstrom R, Boucher RC (1992) Efficiency of gene transfer for restoration of normal airway epithelial function in cystic fibrosis. Nat Genet 2(1):21–25CrossRefPubMedGoogle Scholar
  35. Keiser NW, Engelhardt JF (2011) New animal models of cystic fibrosis: what are they teaching us? Curr Opin Pulm Med 17(6):478–483PubMedPubMedCentralGoogle Scholar
  36. Kerem B, Rommens JM, Buchanan JA, Markiewicz D, Cox TK, Chakravarti A, Buchwald M, Tsui LC (1989) Identification of the cystic fibrosis gene: genetic analysis. Science 245(4922):1073–1080CrossRefPubMedGoogle Scholar
  37. Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA 93(3):1156–1160CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, Joung JK (2016) High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529(7587):490–495CrossRefPubMedPubMedCentralGoogle Scholar
  39. Koller BH, Hagemann LJ, Doetschman T, Hagaman JR, Huang S, Williams PJ, First NL, Maeda N, Smithies O (1989) Germ-line transmission of a planned alteration made in a hypoxanthine phosphoribosyltransferase gene by homologous recombination in embryonic stem cells. Proc Natl Acad Sci USA 86(22):8927–8931CrossRefPubMedPubMedCentralGoogle Scholar
  40. Koshland DE Jr (1989) The cystic fibrosis gene story. Science 245(4922):1029CrossRefPubMedGoogle Scholar
  41. Kucherlapati RS, Eves EM, Song KY, Morse BS, Smithies O (1984) Homologous recombination between plasmids in mammalian cells can be enhanced by treatment of input DNA. Proc Natl Acad Sci USA 81(10):3153–3157CrossRefPubMedPubMedCentralGoogle Scholar
  42. Kunzelmann K, Schwiebert EM, Zeitlin PL, Kuo WL, Stanton BA, Gruenert DC (1993) An immortalized cystic fibrosis tracheal epithelial cell line homozygous for the delta F508 CFTR mutation. Am J Respir Cell Mol Biol 8(5):522–529CrossRefPubMedGoogle Scholar
  43. Kunzelmann K, Legendre JY, Knoell DL, Escobar LC, Xu Z, Gruenert DC (1996) Gene targeting of CFTR DNA in CF epithelial cells. Gene Ther 3(10):859–867PubMedGoogle Scholar
  44. Lee CM, Flynn R, Hollywood JA, Scallan MF, Harrison PT (2012) Correction of the ΔF508 mutation in the cystic fibrosis transmembrane conductance regulator gene by zinc-finger nuclease homology-directed repair. Biores Open Access 1(3):99–108CrossRefPubMedPubMedCentralGoogle Scholar
  45. Li H, Haurigot V, Doyon Y, Li T, Wong SY, Bhagwat AS, Malani N, Anguela XM, Sharma R, Ivanciu L, Murphy SL, Finn JD, Khazi FR, Zhou S, Paschon DE, Rebar EJ, Bushman FD, Gregory PD, Holmes MC, High KA (2011) In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature 475(7355):217–221CrossRefPubMedPubMedCentralGoogle Scholar
  46. Liu Q, Xia Z, Zhong X, Case CC (2002) Validated zinc finger protein designs for all 16 GNN DNA triplet targets. J Biol Chem 277(6):3850–3856CrossRefPubMedGoogle Scholar
  47. Liu J, Walker NM, Ootani A, Strubberg AM, Clarke LL (2015) Defective goblet cell exocytosis contributes to murine cystic fibrosis-associated intestinal disease. J Clin Invest 125(3):1056–1068CrossRefPubMedPubMedCentralGoogle Scholar
  48. Long C, McAnally JR, Shelton JM, Mireault AA, Bassel-Duby R, Olson EN (2014) Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science 345(6201):1184–1188CrossRefPubMedPubMedCentralGoogle Scholar
  49. Maeder ML, Thibodeau-Beganny S, Osiak A, Wright DA, Anthony RM, Eichtinger M, Jiang T, Foley JE, Winfrey RJ, Townsend JA, Unger-Wallace E, Sander JD, Müller-Lerch F, Fu F, Pearlberg J, Göbel C, Dassie JP, Pruett-Miller SM, Porteus MH, Sgroi DC, Iafrate AJ, Dobbs D, McCray PB Jr, Cathomen T, Voytas DF, Joung JK (2008) Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell 31(2):294–301CrossRefPubMedPubMedCentralGoogle Scholar
  50. Mahiny AJ, Dewerth A, Mays LE, Alkhaled M, Mothes B, Malaeksefat E, Loretz B, Rottenberger J, Brosch DM, Reautschnig P, Surapolchai P, Zeyer F, Schams A, Carevic M, Bakele M, Griese M, Schwab M, Nürnberg B, Beer-Hammer S, Handgretinger R, Hartl D, Lehr CM, Kormann MS (2015) In vivo genome editing using nuclease-encoding mRNA corrects SP-B deficiency. Nat Biotechnol 33(6):584–586PubMedGoogle Scholar
  51. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826CrossRefPubMedPubMedCentralGoogle Scholar
  52. Mandegar MA, Huebsch N, Frolov EB, Shin E, Truong A, Olvera MP, Chan AH, Miyaoka Y, Holmes K, Spencer CI, Judge LM, Gordon DE, Eskildsen TV, Villalta JE, Horlbeck MA, Gilbert LA, Krogan NJ, Sheikh SP, Weissman JS, Qi LS, So PL, Conklin BR (2016) CRISPR interference efficiently induces specific and reversible gene silencing in human iPSCs. Cell Stem Cell 18(4):541–553CrossRefPubMedGoogle Scholar
  53. Maresca M, Lin VG, Guo N, Yang Y (2013) Obligate ligation-gated recombination (ObLiGaRe): custom-designed nuclease-mediated targeted integration through nonhomologous end joining. Genome Res 23(3):539–546CrossRefPubMedPubMedCentralGoogle Scholar
  54. McNeer NA, Anandalingam K, Fields RJ, Caputo C, Kopic S, Gupta A, Quijano E, Polikoff L, Kong Y, Bahal R, Geibel JP, Glazer PM, Saltzman WM, Egan ME (2015) Nanoparticles that deliver triplex-forming peptide nucleic acid molecules correct F508del CFTR in airway epithelium. Nat Commun 6:6952CrossRefPubMedPubMedCentralGoogle Scholar
  55. Miller JC, Holmes MC, Wang J, Guschin DY, Lee YL, Rupniewski I, Beausejour CM, Waite AJ, Wang NS, Kim KA, Gregory PD, Pabo CO, Rebar EJ (2007) An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol 25(7):778–785CrossRefPubMedGoogle Scholar
  56. Mini guts for Cystic Fibrosis. Accessed 17 May 2016
  57. Miyaoka Y, Berman JR, Cooper SB, Mayerl SJ, Chan AH, Zhang B, Karlin-Neumann GA, Conklin BR (2016) Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing. Sci Rep 6:23549CrossRefPubMedPubMedCentralGoogle Scholar
  58. Munye MM, Tagalakis AD, Barnes JL, Brown RE, McAnulty RJ, Howe SJ, Hart SL (2016) Minicircle DNA provides enhanced and prolonged transgene expression following airway gene transfer. Sci Rep 6:23125CrossRefPubMedPubMedCentralGoogle Scholar
  59. Mussolino C, Morbitzer R, Lütge F, Dannemann N, Lahaye T, Cathomen T (2011) A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res 39(21):9283–9293CrossRefPubMedPubMedCentralGoogle Scholar
  60. Pearson H (2009) Human genetics: one gene, twenty years. Nature 460(7252):164–169CrossRefGoogle Scholar
  61. Poirot L, Philip B, Schiffer-Mannioui C, Le Clerre D, Chion-Sotinel I, Derniame S, Potrel P, Bas C, Lemaire L, Galetto R, Lebuhotel C, Eyquem J, Cheung GW, Duclert A, Gouble A, Arnould S, Peggs K, Pule M, Scharenberg AM, Smith J (2015) Multiplex genome-edited T-cell manufacturing platform for “off-the-shelf” adoptive T-cell immunotherapies. Cancer Res 75(18):3853–3864CrossRefPubMedGoogle Scholar
  62. Poulsen JH, Fischer H, Illek B, Machen TE (1994) Bicarbonate conductance and pH regulatory capability of cystic fibrosis transmembrane conductance regulator. Proc Natl Acad Sci USA 91(12):5340–5344CrossRefPubMedPubMedCentralGoogle Scholar
  63. Quinton PM (2001) The neglected ion: HCO3 . Nat Med 7(3):292–293CrossRefPubMedGoogle Scholar
  64. Ramalingam S, London V, Kandavelou K, Cebotaru L, Guggino W, Civin C, Chandrasegaran S (2013) Generation and genetic engineering of human induced pluripotent stem cells using designed zinc finger nucleases. mStem Cells Dev 22(4):595–610CrossRefGoogle Scholar
  65. Ramsey BW, Davies J, McElvaney NG, Tullis E, Bell SC, Dřevínek P, Griese M, McKone EF, Wainwright CE, Konstan MW, Moss R, Ratjen F, Sermet-Gaudelus I, Rowe SM, Dong Q, Rodriguez S, Yen K, Ordoñez C, Elborn JS, VX08-770-102 Study Group (2011) A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N Engl J Med 365(18):1663–1672CrossRefPubMedPubMedCentralGoogle Scholar
  66. Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, Makarova KS, Koonin EV, Sharp PA, Zhang F (2015) In vivo genome editing using Staphylococcus aureus Cas9. Nature 520(7546):186–191CrossRefPubMedPubMedCentralGoogle Scholar
  67. Ratcliff R, Evans MJ, Cuthbert AW, MacVinish LJ, Foster D, Anderson JR, Colledge WH (1993) Production of a severe cystic fibrosis mutation in mice by gene targeting. Nat Genet 4(1):35–41CrossRefPubMedGoogle Scholar
  68. Rich DP, Anderson MP, Gregory RJ, Cheng SH, Paul S, Jefferson DM, McCann JD, Klinger KW, Smith AE, Welsh MJ (1990) Expression of cystic fibrosis transmembrane conductance regulator corrects defective chloride channel regulation in cystic fibrosis airway epithelial cells. Nature 347(6291):358–363CrossRefPubMedGoogle Scholar
  69. Richardson CD, Ray Graham J, DeWitt Mark A, Curie Gemma L, Corn Jacob E (2016) Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat Biotechnol 34:339–344CrossRefPubMedGoogle Scholar
  70. Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL et al (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245(4922):1066–1073CrossRefPubMedGoogle Scholar
  71. Rogers CS, Hao Y, Rokhlina T, Samuel M, Stoltz DA, Li Y, Petroff E, Vermeer DW, Kabel AC, Yan Z, Spate L, Wax D, Murphy CN, Rieke A, Whitworth K, Linville ML, Korte SW, Engelhardt JF, Welsh MJ, Prather RS (2008) Production of CFTR-null and CFTR-DeltaF508 heterozygous pigs by adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer. J Clin Invest 118(4):1571–1577CrossRefPubMedPubMedCentralGoogle Scholar
  72. Rommens JM, Iannuzzi MC, Kerem B, Drumm ML, Melmer G, Dean M, Rozmahel R, Cole JL, Kennedy D, Hidaka N et al (1989) Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 245(4922):1059–1065CrossRefPubMedGoogle Scholar
  73. Rosen C, Shezen E, Aronovich A, Klionsky YZ, Yaakov Y, Assayag M, Biton IE, Tal O, Shakhar G, Ben-Hur H, Shneider D, Vaknin Z, Sadan O, Evron S, Freud E, Shoseyov D, Wilschanski M, Berkman N, Fibbe WE, Hagin D, Hillel-Karniel C, Krentsis IM, Bachar-Lustig E, Reisner Y (2016) Preconditioning allows engraftment of mouse and human embryonic lung cells, enabling lung repair in mice. Nat Med 21(8):869–879. doi: 10.1038/nm.3889 (Epub 2015 Jul 13) CrossRefGoogle Scholar
  74. Rouet P, Smih F, Jasin M (1994) Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc Natl Acad Sci USA 91(13):6064–6068CrossRefPubMedPubMedCentralGoogle Scholar
  75. Sakuma T, Nakade S, Sakane Y, Suzuki KT, Yamamoto T (2016) MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems. Nat Protoc 11(1):118–133. doi:  10.1038/nprot.2015.140 CrossRefPubMedGoogle Scholar
  76. Sangiuolo F, Scaldaferri ML, Filareto A, Spitalieri P, Guerra L, Favia M, Caroppo R, Mango R, Bruscia E, Gruenert DC, Casavola V, De Felici M, Novelli G (2008) Cftr gene targeting in mouse embryonic stem cells mediated by Small Fragment Homologous Replacement (SFHR). Front Biosci 13:2989–2999CrossRefPubMedPubMedCentralGoogle Scholar
  77. Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters PJ, Clevers H (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459(7244):262–265CrossRefPubMedGoogle Scholar
  78. Schwank G, Koo BK, Sasselli V, Dekkers JF, Heo I, Demircan T, Sasaki N, Boymans S, Cuppen E, van der Ent CK, Nieuwenhuis EE, Beekman JM, Clevers H (2013) Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13(6):653–658CrossRefPubMedGoogle Scholar
  79. Shah VS, Meyerholz DK, Tang XX, Reznikov L, Abou Alaiwa M, Ernst SE, Karp PH, Wohlford-Lenane CL, Heilmann KP, Leidinger MR, Allen PD, Zabner J, McCray PB Jr, Ostedgaard LS, Stoltz DA, Randak CO, Welsh MJ (2016) Airway acidification initiates host defense abnormalities in cystic fibrosis mice. Science 351(6272):503–507CrossRefPubMedPubMedCentralGoogle Scholar
  80. Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F (2016) Rationally engineered Cas9 nucleases with improved specificity. Science 351(6268):84–88CrossRefPubMedGoogle Scholar
  81. Smithies O, Gregg RG, Boggs SS, Doralewski MA, Kucherlapati RS (1985) Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination. Nature 317:230–234CrossRefPubMedGoogle Scholar
  82. Snouwaert JN, Brigman KK, Latour AM, Malouf NN, Boucher RC, Smithies O, Koller BH (1992) An animal model for cystic fibrosis made by gene targeting. Science 257(5073):1083–1088CrossRefPubMedGoogle Scholar
  83. Sun X, Yan Z, Yi Y, Li Z, Lei D, Rogers CS, Chen J, Zhang Y, Welsh MJ, Leno GH, Engelhardt JF (2008) Adeno-associated virus-targeted disruption of the CFTR gene in cloned ferrets. J Clin Invest 118(4):1578–1583. doi: 10.1172/JCI34599 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Suzuki S, Sargent RG, Illek B, Fischer H, Esmaeili-Shandiz A, Yezzi MJ, Lee A, Yang Y, Kim S, Renz P, Qi Z, Yu J, Muench MO, Beyer AI, Guimarães AO, Ye L, Chang J, Fine EJ, Cradick TJ, Bao G, Rahdar M, Porteus MH, Shuto T, Kai H, Kan YW, Gruenert DC (2016) TALENs facilitate single-step seamless SDF correction of F508del CFTR in airway epithelial submucosal gland cell-derived CF-iPSCs. Mol Ther Nucleic Acids 5:e273. doi: 10.1038/mtna.2015.43 CrossRefPubMedGoogle Scholar
  85. Szczepek M, Brondani V, Büchel J, Serrano L, Segal DJ, Cathomen T (2007) Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol 25(7):786–793CrossRefPubMedGoogle Scholar
  86. Tebas P, Stein D, Tang WW, Frank I, Wang SQ, Lee G, Spratt SK, Surosky RT, Giedlin MA, Nichol G, Holmes MC, Gregory PD, Ando DG, Kalos M, Collman RG, Binder-Scholl G, Plesa G, Hwang WT, Levine BL, June CH (2014) Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 370(10):901–910CrossRefPubMedPubMedCentralGoogle Scholar
  87. Thomas KR, Folger KR, Capecchi MR (1986) High frequency targeting of genes to specific sites in the mammalian genome. Cell 44(3):419–428CrossRefPubMedGoogle Scholar
  88. Thompson S, Clarke AR, Pow AM, Hooper ML, Melton DW (1989) Germ line transmission and expression of a corrected HPRT gene produced by gene targeting in embryonic stem cells. Cell 56(2):313–321CrossRefPubMedGoogle Scholar
  89. Tuggle KL, Birket SE, Cui X, Hong J, Warren J, Reid L, Chambers A, Ji D, Gamber K, Chu KK, Tearney G, Tang LP, Fortenberry JA, Du M, Cadillac JM, Bedwell DM, Rowe SM, Sorscher EJ, Fanucchi MV (2014) Characterization of defects in ion transport and tissue development in cystic fibrosis transmembrane conductance regulator (CFTR)-knockout rats. PLoS One 9(3):e91253CrossRefPubMedPubMedCentralGoogle Scholar
  90. Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S, Jamieson AC, Porteus MH, Gregory PD, Holmes MC (2005) Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435(7042):646–651CrossRefPubMedGoogle Scholar
  91. van Doorninck JH, French PJ, Verbeek E, Peters RH, Morreau H, Bijman J, Scholte BJ (1995) A mouse model for the cystic fibrosis delta F508 mutation. EMBO J 14(18):4403–4411PubMedPubMedCentralGoogle Scholar
  92. Van Goor F, Hadida S, Grootenhuis PD, Burton B, Cao D, Neuberger T, Turnbull A, Singh A, Joubran J, Hazlewood A, Zhou J, McCartney J, Arumugam V, Decker C, Yang J, Young C, Olson ER, Wine JJ, Frizzell RA, Ashlock M, Negulescu P (2009) Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc Natl Acad Sci USA 106(44):18825–18830CrossRefPubMedPubMedCentralGoogle Scholar
  93. Verkman AS, Edelman A, Amaral M, Mall MA, Beekman JM, Meiners T, Galietta LJ, Bear CE (2015) Finding new drugs to enhance anion secretion in cystic fibrosis: toward suitable systems for better drug screening. Report on the pre-conference meeting to the 12th ECFS Basic Science Conference, Albufeira, 25–28 March 2015. J Cyst Fibros 14(6):700–705CrossRefPubMedPubMedCentralGoogle Scholar
  94. Wainwright CE, Elborn JS, Ramsey BW, Marigowda G, Huang X, Cipolli M, Colombo C, Davies JC, De Boeck K, Flume PA, Konstan MW, McColley SA, McCoy K, McKone EF, Munck A, Ratjen F, Rowe SM, Waltz D, Boyle MP, TRAFFIC Study Group, TRANSPORT Study Group (2015) Lumacaftor-ivacaftor in patients with cystic fibrosis homozygous for Phe508del CFTR. N Engl J Med 373(3):220–231CrossRefPubMedPubMedCentralGoogle Scholar
  95. Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153(4):910–918CrossRefPubMedPubMedCentralGoogle Scholar
  96. Wilke M, Buijs-Offerman RM, Aarbiou J, Colledge WH, Sheppard DN, Touqui L, Bot A, Jorna H, de Jonge HR, Scholte BJ (2011) Mouse models of cystic fibrosis: phenotypic analysis and research applications. J Cyst Fibros 10(Suppl 2):S152–S171CrossRefPubMedGoogle Scholar
  97. Yan Z, Stewart ZA, Sinn PL, Olsen JC, Hu J, McCray PB Jr, Engelhardt JF (2015) Ferret and pig models of cystic fibrosis: prospects and promise for gene therapy. Hum Gene Ther Clin Dev 26(1):38–49CrossRefPubMedGoogle Scholar
  98. Yang D, Xu J, Zhu T, Fan J, Lai L, Zhang J, Chen YE (2014) Effective gene targeting in rabbits using RNA-guided Cas9 nucleases. J Mol Cell Biol 6(1):97–99CrossRefPubMedPubMedCentralGoogle Scholar
  99. Yang R, Kerschner JL, Gosalia N, Neems D, Gorsic LK, Safi A, Crawford GE, Kosak ST, Leir SH, Harris A (2016) Differential contribution of cis-regulatory elements to higher order chromatin structure and expression of the CFTR locus. Nucleic Acids Res 44(7):3082–3094. doi: 10.1093/nar/gkv1358 CrossRefPubMedGoogle Scholar
  100. Zamecnik PC, Raychowdhury MK, Tabatadze DR, Cantiello HF (2004) Reversal of cystic fibrosis phenotype in a cultured Delta508 cystic fibrosis transmembrane conductance regulator cell line by oligonucleotide insertion. Proc Natl Acad Sci USA 101(21):8150–8155CrossRefPubMedPubMedCentralGoogle Scholar
  101. Zeiher BG, Eichwald E, Zabner J, Smith JJ, Puga AP, McCray PB Jr, Capecchi MR, Welsh MJ, Thomas KR (1995). A mouse model for the delta F508 allele of cystic fibrosis. J Clin Invest. 1995 Oct;96(4):2051-64Google Scholar
  102. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163(3):759–771CrossRefPubMedGoogle Scholar
  103. Zijlstra M, Li E, Sajjadi F, Subramani S, Jaenisch R (1989) Germ-line transmission of a disrupted beta 2-microglobulin gene produced by homologous recombination in embryonic stem cells. Nature 342(6248):435–438CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Patrick T. Harrison
    • 1
  • David J. Sanz
    • 1
  • Jennifer A. Hollywood
    • 1
    • 2
  1. 1.University College CorkCorkIreland
  2. 2.The University of AucklandAucklandNew Zealand

Personalised recommendations